
STATISTICAL AND
MACHINE LEARNING
APPROACHES FOR
NETWORK ANALYSIS

www.it-ebooks.info

http://www.it-ebooks.info/

STATISTICAL AND
MACHINE LEARNING
APPROACHES FOR
NETWORK ANALYSIS

Edited by

MATTHIAS DEHMER
UMIT – The Health and Life Sciences University, Institute for Bioinformatics and
Translational Research, Hall in Tyrol, Austria

SUBHASH C. BASAK
Natural Resources Research Institute
University of Minnesota, Duluth
Duluth, MN, USA

www.it-ebooks.info

http://www.it-ebooks.info/

Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

ISBN: 978-0-470-19515-4

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

www.it-ebooks.info

http://www.it-ebooks.info/

To Christina

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Preface ix

Contributors xi

1 A Survey of Computational Approaches to Reconstruct and
Partition Biological Networks 1
Lipi Acharya, Thair Judeh, and Dongxiao Zhu

2 Introduction to Complex Networks: Measures,
Statistical Properties, and Models 45
Kazuhiro Takemoto and Chikoo Oosawa

3 Modeling for Evolving Biological Networks 77
Kazuhiro Takemoto and Chikoo Oosawa

4 Modularity Configurations in Biological Networks with
Embedded Dynamics 109
Enrico Capobianco, Antonella Travaglione, and Elisabetta Marras

5 Influence of Statistical Estimators on the Large-Scale
Causal Inference of Regulatory Networks 131
Ricardo de Matos Simoes and Frank Emmert-Streib

vii

www.it-ebooks.info

http://www.it-ebooks.info/

viii CONTENTS

6 Weighted Spectral Distribution: A Metric for Structural
Analysis of Networks 153
Damien Fay, Hamed Haddadi, Andrew W. Moore, Richard Mortier,
Andrew G. Thomason, and Steve Uhlig

7 The Structure of an Evolving Random Bipartite Graph 191
Reinhard Kutzelnigg

8 Graph Kernels 217
Matthias Rupp

9 Network-Based Information Synergy Analysis for
Alzheimer Disease 245
Xuewei Wang, Hirosha Geekiyanage, and Christina Chan

10 Density-Based Set Enumeration in Structured Data 261
Elisabeth Georgii and Koji Tsuda

11 Hyponym Extraction Employing a Weighted Graph Kernel 303
Tim vor der Brück

Index 327

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE

An emerging trend in many scientific disciplines is a strong tendency toward being
transformed into some form of information science. One important pathway in this
transition has been via the application of network analysis. The basic methodology in
this area is the representation of the structure of an object of investigation by a graph
representing a relational structure. It is because of this general nature that graphs have
been used in many diverse branches of science including bioinformatics, molecular
and systems biology, theoretical physics, computer science, chemistry, engineering,
drug discovery, and linguistics, to name just a few. An important feature of the book
“Statistical and Machine Learning Approaches for Network Analysis” is to combine
theoretical disciplines such as graph theory, machine learning, and statistical data
analysis and, hence, to arrive at a new field to explore complex networks by using
machine learning techniques in an interdisciplinary manner.

The age of network science has definitely arrived. Large-scale generation of
genomic, proteomic, signaling, and metabolomic data is allowing the construction
of complex networks that provide a new framework for understanding the molecular
basis of physiological and pathological states. Networks and network-based methods
have been used in biology to characterize genomic and genetic mechanisms as well
as protein signaling. Diseases are looked upon as abnormal perturbations of critical
cellular networks. Onset, progression, and intervention in complex diseases such as
cancer and diabetes are analyzed today using network theory.

Once the system is represented by a network, methods of network analysis can
be applied to extract useful information regarding important system properties and to
investigate its structure and function. Various statistical and machine learning methods
have been developed for this purpose and have already been applied to networks. The
purpose of the book is to demonstrate the usefulness, feasibility, and the impact of the

ix

www.it-ebooks.info

http://www.it-ebooks.info/

x PREFACE

methods on the scientific field. The 11 chapters in this book written by internationally
reputed researchers in the field of interdisciplinary network theory cover a wide range
of topics and analysis methods to explore networks statistically.

The topics we are going to tackle in this book range from network inference and
clustering, graph kernels to biological network analysis for complex diseases using
statistical techniques. The book is intended for researchers, graduate and advanced
undergraduate students in the interdisciplinary fields such as biostatistics, bioinfor-
matics, chemistry, mathematical chemistry, systems biology, and network physics.
Each chapter is comprehensively presented, accessible not only to researchers from
this field but also to advanced undergraduate or graduate students.

Many colleagues, whether consciously or unconsciously, have provided us with
input, help, and support before and during the preparation of the present book. In
particular, we would like to thank Maria and Gheorghe Duca, Frank Emmert-Streib,
Boris Furtula, Ivan Gutman, Armin Graber, Martin Grabner, D. D. Lozovanu, Alexei
Levitchi, Alexander Mehler, Abbe Mowshowitz, Andrei Perjan, Ricardo de Matos
Simoes, Fred Sobik, Dongxiao Zhu, and apologize to all who have not been named
mistakenly. Matthias Dehmer thanks Christina Uhde for giving love and inspiration.
We also thank Frank Emmert-Streib for fruitful discussions during the formation of
this book.

We would also like to thank our editor Susanne Steitz-Filler from Wiley who has
been always available and helpful. Last but not the least, Matthias Dehmer thanks
the Austrian Science Funds (project P22029-N13) and the Standortagentur Tirol for
supporting this work.

Finally, we sincerely hope that this book will serve the scientific community of
network science reasonably well and inspires people to use machine learning-driven
network analysis to solve interdisciplinary problems successfully.

Matthias Dehmer
Subhash C. Basak

www.it-ebooks.info

http://www.it-ebooks.info/

CONTRIBUTORS

Lipi Acharya, Department of Computer Science, University of New Orleans, New
Orleans, LA, USA

Enrico Capobianco, Laboratory for Integrative Systems Medicine (LISM)
IFC-CNR, Pisa (IT); Center for Computational Science, University of Miami,
Miami, FL, USA

Christina Chan, Departments of Chemical Engineering and Material Sciences,
Genetics Program, Computer Science and Engineering, and Biochemistry and
Molecular Biology, Michigan State University, East Lansing, MI, USA

Ricardo de Matos Simoes, Computational Biology and Machine Learning Lab,
Center for Cancer Research and Cell Biology, School of Medicine, Dentistry and
Biomedical Sciences, Queen’s University Belfast, UK

Frank Emmert-Streib, Computational Biology and Machine Learning Lab,
Center for Cancer Research and Cell Biology, School of Medicine, Dentistry and
Biomedical Sciences, Queen’s University Belfast, UK

Damien Fay, Computer Laboratory, Systems Research Group, University of
Cambridge, UK

Hirosha Geekiyanage, Genetics Program, Michigan State University, East Lansing,
MI, USA

Elisabeth Georgii, Department of Information and Computer Science, Helsinki
Institute for Information Technology, Aalto University School of Science and
Technology, Aalto, Finland

xi

www.it-ebooks.info

http://www.it-ebooks.info/

xii CONTRIBUTORS

Hamed Haddadi, Computer Laboratory, Systems Research Group, University of
Cambridge, UK

Thair Judeh, Department of Computer Science, University of New Orleans, New
Orleans, LA, USA

Reinhard Kutzelnigg, Math.Tec, Heumühlgasse, Wien, Vienna, Austria

Elisabetta Marras, CRS4 Bioinformatics Laboratory, Polaris Science and
Technology Park, Pula, Italy

Andrew W. Moore, School of Computer Science, Carnegie Mellon University, USA

Richard Mortier, Horizon Institute, University of Nottingham, UK

Chikoo Oosawa, Department of Bioscience and Bioinformatics, Kyushu Institute of
Technology, Iizuka, Fukuoka 820-8502, Japan

Matthias Rupp, Machine Learning Group, Berlin Institute of Technology, Berlin,
Germany, and, Institute of Pure and Applied Mathematics, University of California,
Los Angeles, CA, USA; currently at the Institute of Pharmaceutical Sciences, ETH
Zurich, Zurich, Switzerland.

Kazuhiro Takemoto, Department of Bioscience and Bioinformatics, Kyushu
Institute of Technology, Iizuka, Fukuoka 820-8502, Japan; PRESTO, Japan
Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan

Andrew G. Thomason, Department of Pure Mathematics and Mathematical
Statistics, University of Cambridge, UK

Antonella Travaglione, CRS4 Bioinformatics Laboratory, Polaris Science and
Technology Park, Pula, Italy

Koji Tsuda, Computational Biology Research Center, National Institute of
Advanced Industrial Science and Technology AIST, Tokyo, Japan

Steve Uhlig, School of Electronic Engineering and Computer Science, Queen Mary
University of London, UK

Tim vor der Brück, Department of Computer Science, Text Technology Lab, Johann
Wolfgang Goethe University, Frankfurt, Germany

Xuewei Wang, Department of Chemical Engineering and Material Sciences,
Michigan State University, East Lansing, MI, USA

Dongxiao Zhu, Department of Computer Science, University of New Orleans;
Research Institute for Children, Children’s Hospital; Tulane Cancer Center, New
Orleans, LA, USA

www.it-ebooks.info

http://www.it-ebooks.info/

1
A SURVEY OF COMPUTATIONAL
APPROACHES TO RECONSTRUCT AND
PARTITION BIOLOGICAL NETWORKS

Lipi Acharya, Thair Judeh, and Dongxiao Zhu

“Everything is deeply intertwingled”
Theodor Holm Nelson

1.1 INTRODUCTION

The above quote by Theodor Holm Nelson, the pioneer of information technology,
states a deep interconnectedness among the myriad topics of this world. The
biological systems are no exceptions, which comprise of a complex web of biomolec-
ular interactions and regulation processes. In particular, the field of computational
systems biology aims to arrive at a theory that reveals complicated interaction pat-
terns in the living organisms, which result in various biological phenomenon. Recog-
nition of such patterns can provide insights into the biomolecular activities, which
pose several challenges to biology and genetics. However, complexity of biologi-
cal systems and often an insufficient amount of data used to capture these activities
make a reliable inference of the underlying network topology as well as characteri-
zation of various patterns underlying these topologies, very difficult. As a result, two
problems that have received a considerable amount of attention among researchers
are (1) reverse engineering of biological networks from genome-wide measurements
and (2) inference of functional units in large biological networks (Fig 1.1).

Statistical and Machine Learning Approaches for Network Analysis, Edited by Matthias Dehmer and
Subhash C. Basak.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

1

www.it-ebooks.info

http://www.it-ebooks.info/

2 A SURVEY OF COMPUTATIONAL APPROACHES

FIGURE 1.1 Approaches addressing two fundamental problems in computational systems
biology (1) reconstruction of biological networks from two complementary forms of data
resources, gene expression data and gene sets and (2) partitioning of large biological networks
to extract functional units. Two classes of problems in network partitioning are graph clustering
and community detection.

Rapid advances in high-throughput technologies have brought about a revolution
in our understanding of biomolecular interaction mechanisms. A reliable inference
of these mechanisms directly relates to the measurements used in the inference pro-
cedure. High throughput molecular profiling technologies, such as microarrays and
second-generation sequencing, have enabled a systematic study of biomolecular ac-
tivities by generating an enormous amount of genome-wide measurements, which
continue to accumulate in numerous databases. Indeed, simultaneous profiling of
expression levels of tens of thousands of genes allows for large-scale quantitative
experiments. This has resulted in substantial interest among researchers in the devel-
opment of novel algorithms to reliably infer the underlying network topology using
gene expression data. However, gaining biological insights from large-scale gene
expression data is very challenging due to the curse of dimensionality. Correspond-
ingly, a number of computational and experimental methods have been developed to
arrange genes in various groups or clusters, on the basis of certain similarity crite-
rion. Thus, an initial characterization of large-scale gene expression data as well as
conclusions derived from biological experiments result in the identification of several
smaller components comprising of genes sharing similar biological properties. We
refer to these components as gene sets. Availability of effective computational and
experimental strategies have led to the emergence of gene sets as a completely new
form of data for the reverse engineering of gene regulatory relationships. Gene set
based approaches have gained more attention for their inherent ability to incorporate
higher-order interaction mechanisms as opposed to individual genes.

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION 3

There has been a sequence of computational efforts addressing the problem of
network reconstruction from gene expression data and gene sets. Gaussian graphi-
cal models (GGMs) [1–3], probabilistic Boolean networks (PBNs) [4–7], Bayesian
networks (BNs) [8,9], differential equation based [10,11] and mutual information net-
works such as relevance networks (RNs) [12,13], ARACNE [14], CLR [15], MRNET
[16] are viable approaches capitalizing on the use of gene expression data, whereas
collaborative graph model (cGraph) [17], frequency method (FM) [18], and network
inference from cooccurrences (NICO) [19,20] are suitable for the reverse engineering
of biological networks from gene sets.

After a biological network is reconstructed, it may be too broad or abstract of
a representation for a particular biological process of interest. For example, given
a specific signal transduction, only a part of the underlying network is activated as
opposed to the entire network. A finer level of detail is needed. Furthermore, these
parts may represent the functional units of a biological network. Thus, partitioning
a biological network into different clusters or communities is of paramount
importance.

Network partitioning is often associated with several challenges, which make the
problem NP-hard [21]. Finding the optimal partitions of a given network is only feasi-
ble for small networks. Most algorithms heuristically attempt to find a good partition-
ing based on some chosen criteria. Algorithms are often suited to a specific problem
domain. Two major classes of algorithms in network partitioning find their roots in
computer science and sociology, respectively [22]. To avoid confusion, we will refer
to the first class of algorithms as graph clustering algorithms and the second class of
algorithms as community detection algorithms. For graph clustering algorithms, the
relevant applications include very large-scale integration (VLSI) and distributing jobs
on a parallel machine. The most famous algorithm in this domain is the Kernighan–Lin
algorithm [23], which still finds use as a subroutine for various other algorithms. Other
graph clustering algorithms include techniques based on spectral clustering [24]. Orig-
inally community detection algorithms focused on social networks in sociology. They
now cover networks of interest to biologists, mathematicians, and physicists. Some
popular community detection algorithms include Girvan–Newman algorithm [25],
Newman’s eigenvector method [21,22], clique percolation algorithm [26], and In-
fomap [27]. Additional community detection algorithms include methods based on
spin models [28,29], mixture models [30], and label propagation [31].

Intuitively, reconstruction and partitioning of biological networks appear to be two
completely opposite problems in that the former leads to an increase, whereas the lat-
ter results in a decrease of the dimension of a given structure. In fact, these problems
are closely related and one leads to the foundation of the other. For instance, presence
of hypothetical gene regulatory relationships in a reconstructed network provides a
motivation for the detection of biologically meaningful functional modules of the
network. On the other hand, prior to apply gene set based network reconstruction al-
gorithms, a computational or experimental analysis is first needed to derive gene sets.
In this chapter, we present a number of computational approaches to reconstruct bio-
logical networks from genome-wide measurements, and to partition large biological
networks into subnetworks. We begin with an overview of directed and undirected
networks, which naturally arise in biological systems. Next, we discuss about two

www.it-ebooks.info

http://www.it-ebooks.info/

4 A SURVEY OF COMPUTATIONAL APPROACHES

complementary forms of genome-wide data, gene expression data and gene sets, both
of which can be accommodated by existing network reconstruction algorithms. We
describe the principal aspects of various approaches to reconstruct biological networks
using gene expression data and gene sets, and discuss the pros and cons associated
with each of them. Finally, we present some popular clustering and community al-
gorithms used in network partitioning. The material on network reconstruction and
partition is largely based on Refs. [2,3,6–8,13,17–20,32] and [21–23,25–27,33–36],
respectively.

1.2 BIOLOGICAL NETWORKS

A network is a graph G(V, E) defined in terms of a set of vertices V and a set of
edges E. In case of biological networks, a vertex v ∈ V is either a gene or protein
encoded by an organism, and an edge e ∈ E joining two vertices v1, v2 ∈ V in the
network represents biological properties connecting v1 and v2. A biological network
can be directed or undirected depending on the biological relationship that used to
join the pairs of vertices in the network. Both directed and undirected networks occur
naturally in biological systems. Inference of these networks is a major challenge in
systems biology. We briefly review two kinds of biological networks in the following
sections.

1.2.1 Directed Networks

In directed networks, each edge is identified as an ordered pair of vertices. Accord-
ing to the Central Dogma of Molecular Biology, genetic information is encoded
in double-stranded DNA. The information stored in DNA is transferred to single-
stranded messenger RNA (mRNA) to direct protein synthesis [42]. Signal transduc-
tion is the primary mean to control the passage of biological information from DNA to
mRNA with mRNA directing the synthesis of proteins. A signal transduction event is
usually triggered by the binding of external ligands (e.g., cytokine and chemokine) to
the transmembrane receptors. This binding results in a sequential activation of signal
molecules, such as cytoplasmic protein kinase and nuclear transcription factors (TFs),
to lead to a biological end-point function [42]. A signaling pathway is composed of
a web of gene regulatory wiring in response to different extracellular stimulus. Thus,
signaling pathways can be viewed as directed networks containing all genes (or pro-
teins) of an organism as vertices. A directed edge represents the flow of information
from one gene to another gene.

1.2.2 Undirected Networks

Undirected networks differ from directed networks in that the edges in such networks
are undirected. In other words, an undirected network can be viewed as a directed
network by considering an undirected pair of vertices (v1, v2) as two directed pairs
(v1, v2) and (v2, v1). Some biological networks are better suited for an undirected

www.it-ebooks.info

http://www.it-ebooks.info/

BIOLOGICAL NETWORKS 5

representation. Protein–protein interaction (PPI) network is an undirected network,
where each protein is considered as a vertex and the physical interaction between a
pair of proteins is represented as an edge [43].

The past decade has witnessed a significant progress in the computational inference
of biological networks. A variety of approaches in the form of network models and
novel algorithms have been proposed to understand the structure of biological net-
works at both global and local level. While the grand challenge in a global approach is
to provide an integrated view of the underlying biomolecular interaction mechanisms,
a local approach focuses on identifying fundamental domains representing functional
units of a biological network.

Both directed and undirected network models have been developed to reliably infer
the biomolecular activities at a global level. As discussed above, directed networks
represent an abstraction of gene regulatory mechanisms, while the physical interac-
tions of genes are suitably modeled as undirected networks. Focus has also been on the
computational inference of biomolecular activities by accommodating genome-wide
data in diverse formats. In particular, gene set based approaches have gained attention
in recent bioinformatics analysis [44,45]. Availability of a wide range of experimen-
tal and computational methods have identified coherent gene set compendiums [46].
Sophisticated tools now exist to statistically verify the biological significance of a par-
ticular gene set of interest [46–48]. An emerging trend in this field is to reconstruct
signaling pathways by inferring the order of genes in gene sets [19,20]. There are sev-
eral unique features associated with gene set based network inference approaches. In
particular, such approaches do not rely on gene expression data for the reconstruction
of underlying network.

The algorithms to understand biomolecular activities at the level of subnetworks
have evolved over time. Community detection algorithms, in particular, originated
with hierarchical partitioning algorithms that include the Girvan–Newman algorithm.
Since these algorithms tend to produce a dendrogram as their final result, it is necessary
to be able to rank the different partitions represented by the dendrogram. Modularity
was introduced by Newman and Girvan to address this issue. Many methods have
resulted with modularity at the core. More recently, though, it has been shown that
modularity suffers from some drawbacks. While there have been some attempts to
address these issues, newer methods continued to emerge such as Infomap. Research
has also expanded to incorporate different types of biological networks and commu-
nities. Initially, only undirected and unweighted networks were the focus of study.
Methods are now capable of dealing with both directed and weighted networks. More-
over, previous studies only concentrated on distinct communities that did not allow
overlap. With the advent of the clique percolation method and other similar methods,
overlapping communities are becoming increasingly popular. The aforementioned
approaches have been used to identify the structural organization of a variety of bi-
ological networks including metabolic networks, PPI networks, and protein domain
networks. Such networks have a power–law degree distribution and the quantitative
signature of scale-free networks [49]. PPI networks, in particular, have been the sub-
ject of intense study in both bioinformatics and biology as protein interactions are
fundamental for cellular processes [50].

www.it-ebooks.info

http://www.it-ebooks.info/

6 A SURVEY OF COMPUTATIONAL APPROACHES

FIGURE 1.2 (a) Example of a directed network. The figure shows Escherichia coli gold stan-
dard network from the DREAM3 Network Challenges [37–39]. (b) Example of an undirected
network. The figure shows an in silico gold standard network from the DREAM2 Network
Challenges [40,41].

A common problem associated with the computational inference of a biological
network is to assess the performance of the approach used in the inference procedure.
It is quite assess as the structure of the true underlying biological network is unknown.
As a result, one relies on biologically plausible simulated networks and data generated
from such networks. A variety of in silico benchmark directed and undirected net-
works are provided by the dialogue for reverse engineering assessments and methods
(DREAM) initiative to systematically evaluate the performance of reverse engineer-
ing methods, for example Refs. [37–41]. Figures 1.2 and 1.7 illustrate gold standard
directed network, undirected network, and a network with community structure from
the in silico network challenges in DREAM initiative.

1.3 GENOME-WIDE MEASUREMENTS

In this section, we present an overview of two complementary forms of data resources
(Fig. 1.3), both of which have been utilized by the existing network reconstruction
algorithms. The first resource is gene expression data, which is represented as matrix
of gene expression levels. The second data resource is a gene set compendium. Each
gene set in a compendium stands for a set of genes and the corresponding gene
expression levels may or may not be available.

1.3.1 Gene Expression Data

Gene expression data is the most common form of data used in the computational
inference of biological networks. It is represented as a matrix of numerical values,

www.it-ebooks.info

http://www.it-ebooks.info/

GENOME-WIDE MEASUREMENTS 7

FIGURE 1.3 Two complementary forms of data accommodated by the existing network
reconstruction algorithms. (a) Gene expression data generated from high-throughput platforms,
for example, microarray. (b) Gene sets often resulted from explorative analysis of large-scale
gene expression data, for example, cluster analysis.

where each row corresponds to a gene, each column represents an experiment and
each entry in the matrix stands for gene expression level. Gene expression profil-
ing enables the measurement of expression levels of thousands of genes simulta-
neously and thus allows for a systematic study of biomolecular interaction mecha-
nisms on genome scale. In the experimental procedure for gene expression profiling
using microarray, typically a glass slide is spotted with oligonucleotides that cor-
respond to specific gene coding regions. Purified RNA is labeled and hybridized
to the slide. After washing, gene expression data is obtained by laser scanning. A
wide range of microarray platforms have been developed to accomplish the goal of
gene expression profiling. The measurements can be obtained either from conven-
tional hybridization-based microarrays [51–53] or contemporary deep sequencing
experiments [54,55]. Affymetrix GeneChip (www.affymetrix.com), Agilent Microar-
ray (www.genomics.agilent.com), and Illumina BeadArray (www.illumina.com) are
representative microarray platforms. Gene-expression data are accessible from sev-
eral databases, for example, National Center for Biological Technology (NCBI) Gene
Expression Omnibus (GEO) [56] and the European Molecular Biology Lab (EMBL)
ArrayExpress [57].

1.3.2 Gene Sets

Gene sets are defined as sets of genes sharing biological similarities. Gene sets
provide a rich source of data to infer underlying gene regulatory mechanisms as they
are indicative of genes participating in the same biological process. It is impractical
to collect a large number of samples from high-throughput platforms to accurately
reflect the activities of thousands of genes. This poses challenges in gaining deep
biological insights from genome-wide gene expression data. Consequently,
experimental and computational methods are adopted to reduce the dimension of
the space of variables [58]. Such characterizations lead to the discovery of clusters

www.it-ebooks.info

http://www.it-ebooks.info/

8 A SURVEY OF COMPUTATIONAL APPROACHES

of genes or gene sets, consisting of genes which share similar biological functions.
Some of the recent gene set based bioinformatics analyses include gene set enrich-
ment analysis [46–48] and gene set based classification [44,45]. The major advantage
of working with gene sets is their ability to naturally incorporate higher-order in-
teraction patterns. In comparison to gene expression data, gene sets are more robust
to noise and facilitate data integration from multiple sources. Computational infer-
ence of signaling pathways from gene sets, without assuming the availability of the
corresponding gene expression levels, is an emerging area of research [17–20].

1.4 RECONSTRUCTION OF BIOLOGICAL NETWORKS

In this section, we describe some existing approaches to reconstruct directed and
undirected biological networks from gene expression data and gene sets. To recon-
struct directed networks from gene expression data, we present Boolean network,
probabilistic Boolean network, and Bayesian network models. We discuss cGraph,
frequency method and NICO approaches for network reconstruction using gene sets
(Fig 1.4). Next, we present relevance networks and graphical Gaussian models for the
reconstruction of undirected biological networks from gene expression data (Fig 1.5).

FIGURE 1.4 (a) Representation of inputs and Boolean data in the frequency method from
Ref. [18]. (b) Network inference from PAK pathway [67] using NICO, in the presence of a
prior known end points in each path [68]. (c) The building block of cGraph from Ref. [17].

www.it-ebooks.info

http://www.it-ebooks.info/

F
IG

U
R

E
1.

5
C

om
pa

ri
so

n
of

co
rr

el
at

io
n-

ba
se

d
re

le
va

nc
e

ne
tw

or
ks

(a
)a

nd
pa

rt
ia

lc
or

re
la

tio
n

ba
se

d
gr

ap
hi

ca
lG

au
ss

ia
n

m
od

el
in

g
(b

)p
er

fo
rm

ed
on

a
sy

nt
he

tic
da

ta
se

tg
en

er
at

ed
fr

om
m

ul
tiv

ar
ia

te
no

rm
al

di
st

ri
bu

tio
n.

T
he

fig
ur

es
re

pr
es

en
te

st
im

at
ed

co
rr

el
at

io
ns

an
d

pa
rt

ia
lc

or
re

la
tio

ns
be

tw
ee

n
ev

er
y

pa
ir

of
ge

ne
s.

L
ig

ht
to

da
rk

co
lo

rs
co

rr
es

po
nd

to
hi

gh
to

lo
w

co
rr

el
at

io
ns

an
d

pa
rt

ia
lc

or
re

la
tio

ns
.

9

www.it-ebooks.info

http://www.it-ebooks.info/

10 A SURVEY OF COMPUTATIONAL APPROACHES

The review of models in case of directed and undirected networks is largely based on
Refs. [6–8,17–20] and [2,3,13,32], respectively.

Although the aforementioned approaches for the reconstruction of directed
networks have been developed for specific type of genome-wide measurements, they
can be unified in case of binary discrete data. For instance, prior to infer a Boolean
network, gene expression data is first discretized, for example, by assuming binary
labels for each gene. Many Bayesian network approaches also assume the avail-
ability of gene expression data in a discretized form. On the other hand, a gene set
compendium naturally corresponds to a binary discrete data set and is obtained by
considering the presence or absence of genes in a gene set.

1.4.1 Reconstruction of Directed Networks

1.4.1.1 Boolean Networks
Boolean networks [4–6], present a simple model to reconstruct biological networks
from gene expression data. In the model, a Boolean variable is associated with the state
of a gene (ON or OFF). As a result, gene expression data is first discretized using
binary labels. Boolean networks represent directed graphs, where gene regulatory
relationships are inferred using boolean functions (AND, OR, NOT, NOR, NAND).

Mathematically, a Boolean network G(V, F) is defined by a set of nodes V =
{x1, . . . , xn} with each node representing a gene, and a set of logical Boolean functions
F = {f1, . . . , fn} defining transition rules. We write xi = 1 to denote that the ith gene
is ON or expressed, whereas xi = 0 means that it is OFF or not expressed. Boolean
function fi updates the state of xi at time t + 1 using the binary states of other nodes
at time t. States of all the genes are updated in a synchronous manner based on the
transition rules associated with them, and this process is repeated.

Considering the complicated dynamics of biological networks, Boolean networks
are inherently simple models which have been developed to study these dynam-
ics. This is achieved by assigning Boolean states to each gene and employing
Boolean functions to model rule-based dependencies between genes. By assuming
only Boolean states for a gene, emphasis is given to the qualitative behavior of the
network rather than quantitative information. The use of Boolean functions in mod-
eling gene regulatory mechanisms leads to computational tractability even for a large
network, which is often an issue associated with network reconstruction algorithms.
Many biological phenomena, for example, cellular state dynamics, stability, and hys-
teresis, naturally fit into the framework of Boolean network models [59]. However, a
major disadvantage of Boolean networks is their deterministic nature, resulting from
a single Boolean function associated with a node. Moreover, the assumption of bi-
nary states for each gene may correspond to an oversimplification of gene regulatory
mechanisms. Thus, Boolean networks are not a choice when the gene expression
levels vary in a smooth continuous manner rather than two extreme levels, that is,
“very high expression” and “very low expression.” The transition rules in Boolean
network models are derived from gene expression data. As gene expression data are
noisy and often contain a larger number of genes than the number of samples, the

www.it-ebooks.info

http://www.it-ebooks.info/

RECONSTRUCTION OF BIOLOGICAL NETWORKS 11

inferred rules may not be reliable. This further contributes to an inaccurate inference
of gene regulatory relationships.

1.4.1.2 Probabilistic Boolean Networks
To overcome the pitfalls associated with Boolean networks, probabilistic Boolean
networks (PBNs) were introduced in Ref. [7] as their probabilistic generalization.
PBNs extend Boolean networks by allowing for more than one possible Boolean
function corresponding to each node, and offer a more flexible and enhanced network
modeling framework.

In the underlying model presented in Ref. [7], every gene xi is associated with a
set of l(i) functions

Fi =
{

f
(i)
1 , . . . , f

(i)
l(i)

}
, (1.1)

where each f
(i)
j corresponds to a possible Boolean function determining the value of

xi, i = 1, . . . , n. Clearly, Boolean networks follow as a particular case when l(i) = 1,
for each i = 1, . . . , n. The kth realization of PBN at a given time is defined in terms
of vector functions belonging to F1 × . . . × Fn as

fk =
(
f

(1)
k1

, . . . , f
(n)
kn

)
, (1.2)

where 1 ≤ ki ≤ l(i), f
(i)
ki

∈ Fi and i = 1, . . . , n. For a given f = (f (1), . . . , f (n)) ∈
F1 × . . . × Fn, the probability that jth function f

(i)
j from Fi is employed in predicting

the value of xi, is given by

c
(i)
j = Pr{f (i) = f

(i)
j } =

∑
k:f (i)

ki
=f

(i)
j

Pr{f = fk}, (1.3)

where j = 1, . . . , l(i) and
∑l(i)

j=1 c
(i)
j = 1. The basic building block of a PBN is pre-

sented in Figure 1.6. We refer to Ref. [7] for an extended study on PBNs.
It is clear that PBNs offer a more flexible setting to describe the transition rules

in comparison to Boolean networks. This flexibility is achieved by associating a set
of Boolean functions with each node, as opposed to a single Boolean function. In
addition to inferring the rule-based dependencies as in the case of Boolean networks,
PBNs also model for uncertainties by utilizing the probabilistic setting of Markov
chains. By assigning multiple Boolean functions to a node, the risk associated with
an inaccurate inference of a single Boolean function from gene expression data is
greatly reduced. The design of PBNs facilitates the incorporation of prior knowledge.
Although the complexity in case of PBNs increases from Boolean networks, PBNs
are often associated with a manageable computational load. However, this is achieved
at the cost of oversimplifying gene regulation mechanisms. As in the case of Boolean
networks, PBNs may not be suitable to model gene regulations from smooth and
continuous gene expression data. Discretization of such data sets may result in a
significant amount of information loss.

www.it-ebooks.info

http://www.it-ebooks.info/

12 A SURVEY OF COMPUTATIONAL APPROACHES

FIGURE 1.6 Network reconstruction from gene expression data. (a) Example of a Boolean
network with three genes from Ref. [60]. The figure displays the network as a graph, Boolean
rules for state transitions and a table with all input and output states. (b) The basic building
block of a probabilistic Boolean network from Ref. [7]. (c) A Bayesian network consisting of
four nodes.

1.4.1.3 Bayesian Networks
Bayesian networks [8,9] are graphical models which represent probabilistic relation-
ships between nodes. The structure of BNs embeds conditional dependencies and
independencies, and efficiently encodes the joint probability distribution of all the
nodes in the network. The relationships between nodes are modeled by a directed
acyclic graph (DAG) in which vertices correspond to variables and directed edges
between vertices represent their dependencies.

A BN is defined as a pair (G, �), where G represents a DAG whose nodes
X1, X2, . . . , Xn are random variables, and � denotes the set of parameters that en-
code for each node in the network its conditional probability distribution (CPD), given
that its parents are in the DAG. Thus, � comprises of the parameters

θxi|Pa(xi) = Pr{xi|Pa(xi)}, (1.4)

for each realization xi of Xi conditioned on the set of parents Pa(xi) of xi in G.
The joint probability of all the variables is expressed as a product of conditional
probabilities

Pr{x1, . . . , xn} =
n∏

i=1

Pr{xi|Pa(xi)}. (1.5)

www.it-ebooks.info

http://www.it-ebooks.info/

RECONSTRUCTION OF BIOLOGICAL NETWORKS 13

The problem of learning a BN is to determine the BN structure B that best fits a
given data set D. The fitting of a BN structure is measured by employing a scoring
function. For instance, Bayesian scoring is used to find the optimal BN structure
which maximizes the posterior probability distribution

P(B|D) = P(B, D)

P(D)
. (1.6)

Here, we define two Bayesian score functions Bayesian Dirichlet (BD) score from
Ref. [61] and K2 score presented in Ref. [62].

BD score is defined as [61]

P(B, D) = P(B)
n∏

i=1

qi∏
j=1

�(N ′
ij)

�(Nij + N ′
ij)

ri∏
k=1

�(Nijk + N ′
ijk)

�(N ′
ijk)

, (1.7)

where ri represents the number of states of xi, qi = ∏
xj∈Pa(xi) rj , Nijk is the number

of times xi is in kth state and members in Pa(xi) are in jth state, Nij = ∑ri
k=1 Nijk,

Nik = ∑qi

j=1 Nijk, N ′
ijk are the parameters of Dirichlet prior distribution, P(B) stands

for the prior probability of the structure B and �() represents the Gamma function.

The K2 score is given by [62]

P(B, D) = P(B)
n∏

i=1

qi∏
j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏
k=1

Nijk! (1.8)

We refer to Ref. [61,62] for further readings on Bayesian score functions.
BNs present an appealing probabilistic modeling approach to learn causal rela-

tionships and have been found to be useful for a significant number of applications.
They can be considered as the best approach available for reasoning under uncertainty
from noisy measurements, which prevent the over-fitting of data. The design of the
underlying model facilitates the incorporation of prior knowledge and allows for an
understanding of future events. However, a major disadvantage associated with BN
modeling is that it requires large computational efforts to learn the underlying network
structure. In many formulations learning a BN is an NP-hard problem, regardless of
data size [63]. The number of different structures for a BN with n nodes, is given by
the recursive formula

s(n) =
n∑

i=1

(−1)i+1
(

n

i

)
2i(n−i)s(n − i) = n2O(n)

(1.9)

[62,64]. As s(n) grows exponentially with n, learning the network structure by exhaus-
tively searching over the space of all possible structures is infeasible even when n is
small. Moreover, existence of equivalent networks presents obstacles in the inference
of an optimal structure. BNs are inherently static in nature with no directed cycles.
As a result, dynamic Bayesian networks (DBNs) have been developed to analyze
time series data, which further pose computational challenges in structure learning.

www.it-ebooks.info

http://www.it-ebooks.info/

14 A SURVEY OF COMPUTATIONAL APPROACHES

Thus, a tractable inference via BNs relies on suboptimal heuristic search algorithms.
Some of the popular approaches include K2 [62] and MCMC [65], which have been
implemented in the Bayes Net Tool Box [66].

1.4.1.4 Collaborative Graph Model
As opposed to gene expression data, the collaborative graph or cGraph model [17]
utilizes gene sets to reconstruct the underlying network structure. It presents a simple
model by employing a directed weighted graph to infer gene regulatory mechanisms.

Let V denote the set of all distinct genes among gene sets. In the underlying model
for cGraph [17], the weight Wxy of an edge from a gene x to another gene y satisfies

0 ≤ Wxy ≤ 1 (1.10)

and ∑
y∈V,y /= x

Wxy = 1. (1.11)

Correspondingly, the weight matrix W can be interpreted as a transition probability
matrix used in the theory of Markov chains. For network reconstruction, cGraph uses
weighted counts of every pair of genes that appear among gene sets to approximate the
weights of edges. Weight Wxy can be interpreted as P(y|x), which is the probability
of randomly selecting a gene set S containing gene x followed by randomly choosing
y as a second gene in the set. Assuming that both, the gene set containing gene x and
y were chosen uniformly, weights are approximated as

Wxy = P̂(y|x) =
∑

S:{x,y}⊂S(1
|S|−1)∑

S:x∈S 1
. (1.12)

Overall, cGraph is an inherently simple model, where a weighted edge measures the
strength of a gene’s connection with other genes. It is easy to understand, achievable
at a manageable computational cost and appropriate for modeling pair wise relation-
ships. However, cGraph adds a weighted edge between every pair of genes that appear
together in some gene set and so the networks inferred by cGraph typically contain a
large number of false positives and many interpretable functional modules.

1.4.1.5 Frequency Method
The frequency method presented in Ref. [18] reconstructs a directed network from a
list of unordered gene sets. It estimates an ordering for each gene set by assuming

• tree structures in the paths corresponding to gene sets
• a prior availability of source and destination nodes in each gene set
• a prior availability of directed edges used to form a tree in each gene set, but

not the order in which these edges appear in the tree.

www.it-ebooks.info

http://www.it-ebooks.info/

RECONSTRUCTION OF BIOLOGICAL NETWORKS 15

Following the approach presented in Ref. [18], let us denote the set of source nodes,
target nodes, and the collection of all directed edges involved in the network by S,
T , and E, respectively. Each l ∈ S ∪ T ∪ E can be associated with a binary vector of
length N by considering xl(j) = 1, if l is involved with the jth gene set, where N is
the total number of gene sets. Let sj be the source and dj be the destination node in
the jth gene set. To estimate the order of genes in the jth gene set, FM identifies e∗
satisfying

e∗ = arg max
e∈E

λj(e), (1.13)

where the score λj(e) is defined as

λj(e) = xT
sj

xe − xT
dj

xe, (1.14)

for each e ∈ E with xe(j) = 1. Note that λj(e) determines whether e is closer to sj
than it is to dj . The edge e∗ is placed closest to sj . The edge corresponding to the next
largest score follows e∗. The procedure is repeated until all edges are in order [18].

FM is computationally efficient and leads to a unique solution of the network
inference problem. However, the model makes strong assumptions of the availability
of source and target genes in each gene set as well as directed edges involved in the
corresponding path. Considering the real-world scenarios, it is not practical to assume
the availability of such gene set compendiums. The underlying assumptions in FM
make it inherently deterministic in nature. Moreover, FM is subject to failure in the
presence of multiple paths between the same pair of genes.

1.4.1.6 EM-Based Inference from Gene Sets
We now describe a more general approach from Refs. [19,20] to network reconstruc-
tion from gene sets. It is termed as network inference from co-occurrences or NICO.
Developed under the expectation–maximization (EM) framework, NICO infers the
structure of the underlying network topology by assuming the order of genes in each
gene set as missing information.

In NICO [19,20], signaling pathways are viewed as a collection of T -independent
samples of first-order Markov chain, denoted as

Y = {
y(1), . . . , y(T)}. (1.15)

It is well known that Markov chain depends on an initial probability vector π and
a transition matrix A. NICO treats the unobserved permutations {τ(1), . . . , τ(T)} of
{y(1), . . . , y(T)} as hidden variables and computes the maximum-likelihood estimates
of the parameters π and A via an EM algorithm. The E-step estimates expected
permutations for each path conditioned on the current estimate of parameters, and the
M-step updates the parameter estimates.

Let x(m) denote a path with Nm elements. NICO models rm as a random permutation
matrix drawn uniformly from the collection �Nm of all permutations of Nm elements.

www.it-ebooks.info

http://www.it-ebooks.info/

16 A SURVEY OF COMPUTATIONAL APPROACHES

In particular, the E-step computes the sufficient statistics

α
(m)
t′, t′′ = E

[
Nm∑
t=2

r
(m)
t,t′ r

(m)
t−1, t′′ |x(m), Â, π̂

]
=

∑
r∈�Nm

rt,t′rt−1, t′′P
[
x(m)|r, Â, π̂

]∑
r∈�Nm

P
[
x(m)|r, Â, π̂

]
(1.16)

and

r
(m)
1, t′ = E[

r
(m)
1,t′ |x(m), Â, π̂

] =
∑

r∈�Nm
r1, t′P

[
x(m)|r, Â, π̂

]∑
r∈�Nm

P
[
x(m)|r, Â, π̂

] , (1.17)

where P[x(m)|r, Â, π̂] is computed as

P
[
x(m)|r, Â, π̂

] = P
[
y(m)|τ, Â, π̂

] = π̂
y

(m)
τ1

Nm∏
t=2

Â
y

(m)
τt−1

y
(m)
τt

. (1.18)

The M-step updates the parameters using the closed form expressions

(Âi, j)new =
∑T

m=1
∑Nm

t′,t′′=1 α
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j∑|S|

j=1
∑T

m=1
∑Nm

t′,t′′=1 α
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j

(1.19)

and

(π̂i)new =
∑T

m=1
∑Nm

t′=1 r
(m)
1,t′x

(m)
t′,i∑|S|

i=1
∑T

m=1
∑Nm

t′=1 r
(m)
1,t′x

(m)
t′,i

, (1.20)

where |S| is the total number of distinct genes among gene sets. We refer to Refs.
[19,20], for additional theoretical details.

NICO presents an appealing approach to reconstruct the most likely signaling
pathway from unordered gene sets. The mature EM framework provides a theoretical
foundation for NICO. It is well known that gene expression data are often noisy and
expensive. In order to infer the network topology, NICO purely relies on gene sets
and does not require the corresponding gene expression measurements. As opposed
to a single gene or a pair of genes, gene sets more naturally capture the higher-
order interactions. These advantages make NICO a unique approach to infer signaling
pathways directly from gene sets. However, NICO has a nontrivial computational
complexity. For large networks, the combinatorial nature of the E-step makes the
exact computation infeasible. Thus, an important sampling based approximation of
the E-step has been proposed [19,20]. Moreover, NICO assumes a linear arrangement
of genes in each gene set without any feedback loops and so it is not applicable in
real-world scenarios where signaling pathways are interconnected and regulated via
feedback loops.

www.it-ebooks.info

http://www.it-ebooks.info/

RECONSTRUCTION OF BIOLOGICAL NETWORKS 17

1.4.2 Reconstruction of Undirected Networks

1.4.2.1 Relevance Networks
Relevance networks [13] are based on measuring the strength of pairwise associations
among genes from gene expression data. The pairwise association is measured in terms
of Pearson’s correlation coefficient. Given two genes x and y, Pearson’s correlation
coefficient is defined as

ρ̂(x, y) =
∑N

i=1(ai − a)(bi − b)√∑N
i=1(ai − a)2

√∑N
i=1(bi − b)2

, (1.21)

where x = (a1, . . . , aN) and y = (b1, . . . , bN) represent the N-dimensional observa-
tions for x and y with means a and b, respectively. There also exists an information
theoretic version of RN’s, where correlation is replaced with mutual information (MI)
for each pair of genes. MI between x and y is defined as [12]

MI(x, y) = E(x) + E(y) − E(x, y), (1.22)

where E stands for the entropy of a gene expression pattern and is given by

E(x) = −
n∑

i=1

p(ai) log2(p(ai)). (1.23)

For further readings on RN’s, tools for their inference and comparison with other
mutual information network inference approaches, we refer to Refs. [12,69–71].

In order to detect truly coexpressed gene pairs in an ad-hoc way, the calculated cor-
relation values are compared with a predefined correlation cut-off value. If a calculated
correlation value exceeds the cut-off value, the corresponding genes are connected
by an undirected edge. We now present a more reliable two-stage approach from
Ref. [32], which simultaneously controls the statistical and biological significance of
the inferred network. We only consider the case of Pearson’s correlation, however,
the method can be extended to the case of Kendall correlation coefficient and partial
correlation coefficients [32]. Assuming a total of M genes, we simultaneously test
� = (

M
2

)
pairs of two-sided hypotheses

H0 : Sxi,xj ≤ cormin versus Hα : Sxi,xj > cormin, (1.24)

for each i, j = 1, . . . , M and i /= j. Here, S is the measure of strength of co-expression
(Pearson’s correlation in this case) between gene pairs and cormin is the minimum
acceptable strength of coexpression. The sample correlation coefficient Ŝ (ρ̂ in this
case) serves as a decision statistic to decide the pairwise dependency of two genes.
For large sample size N, the per comparison error rate (PCER) p-values for pairwise
correlation is computed as

pρ(xi,xj) = 2

(
1 − �

(
tanh−1 ρ̂(xi, xj)

(N − 3)−1/2

))
, (1.25)

www.it-ebooks.info

http://www.it-ebooks.info/

18 A SURVEY OF COMPUTATIONAL APPROACHES

where � is the cumulative density function of a standard Gaussian random variable.
The above expression is derived from an asymptotic Gaussian approximations to
ρ̂(xi, xj). Note that the PCER p-value refers to the probability of type I error rate which
is incurred in hypothesis testing for one pair of gene at a time. To simultaneously test
a total of � hypotheses, the following FDR-based procedure is used. It guarantees
that FDR associated with hypotheses testing is not larger than α.

For a fixed FDR level α and cormin, the procedure consists of the following two
stages.

• In Stage I, the null hypothesis

H0 : Sxi,xj = 0 versus Hα : Sxi,xj /= 0 (1.26)

is tested at FDR level α. This employs the step-down procedure of Benjamini
and Hochberg [72].

• Let us assume a total of �1 gene pairs cross Stage I. In Stage II, asymptotic PCER
confidence intervals Iλ(α) are constructed for each value of S corresponding to
�1 pairs. These intervals are then converted into FDR confidence intervals using
the formula Iλ(α) → Iλ(�1α/�) [73]. For the case of Pearson’s correlation,
let z = tanh−1(ρ̂). Then the intervals Iλ(α), for �1 true Pearson’s correlation
coefficients ρ, are given by Ref. [32]

tanh

(
z − zα/2

(N − 3)1/2

)
≤ ρ ≤

(
z + zα/2

(N − 3)1/2

)
, (1.27)

where P(N(0, 1) > zα/2) = α/2. A gene pair is declared to be both statistically
and biologically significant if the corresponding FDR confidence interval and
the interval [−cormin, cormin] do not intersect.

RNs offer a simple and computationally efficient approach to infer undirected
biological networks. However, RNs only infer a possible functional relevancy between
gene pairs and not necessarily their direct association. A high correlation value may
result from an indirect association, for example, regulation of a pair of genes by
another gene. Thus, RNs are often dense with many interpretable functional modules.
Limitations of RNs have been studied in Refs. [69,71].

1.4.2.2 Graphical Gaussian Models
To overcome the shortcomings of RNs, Gaussian graphical models [1–3] were in-
troduced to measure the strength of direct pairwise associations. In GGMs, gene
associations are quantified in terms of partial correlations. Indeed, marginal correla-
tion measures a composite correlation between a pair of genes that includes the effects
of all other genes in the network, whereas partial correlation measures the strength
of direct correlation excluding the effects of all other genes.

In GGMs [1,2], it is assumed that data are drawn from a multivariate normal
distribution N(μ,). The partial correlation matrix � is computed from the inverse

www.it-ebooks.info

http://www.it-ebooks.info/

RECONSTRUCTION OF BIOLOGICAL NETWORKS 19

� = (ωij) = −1 of the covariance matrix as

πij = −ωij/
√

ωiiωjj. (1.28)

Calculation of partial correlation matrix is followed by statistical tests, which deter-
mine the strength of partial correlation computed for every pair of genes. Significantly
nonzero entries in the estimated partial correlation matrix are used to reconstruct the
underlying network.

However, the above method is applicable only if the sample size (N) is larger than
the number of genes (p) in the given data set, for otherwise the sample covariance
matrix cannot be inverted. To tackle the case of small N and large p, a shrinkage co-
variance estimator has been developed [3], which guarantees the positive definiteness
of the estimated covariance matrix and thus leads to its invertibility. The shrinkage
estimator ̂ is written as a convex combination of the following two estimators:

• unconstrained estimator ̂U of the covariance matrix, which often has a high
variance

• constrained estimator ̂C of the covariance matrix, which has a certain bias but
a low variance.

This is expressed as

̂ = (1 − λ)̂U + λ̂C, (1.29)

where λ ∈ [0 1] represents the shrinkage parameter. The Ledoit–Wolf lemma [74] is
used to estimate an optimal value of λ which minimizes the expected value of mean
square error. Let A = [aij] and B = [bij] denote empirical covariance and correlation
matrices, respectively. Then ̂ is given by [3]

̂ij =
{

aii, if i=j

b̂ij
√

aiiajj, otherwise
(1.30)

where

b̂ij =
{

1, if i=j

bij min(1, max(0, 1 − λ̂∗)), otherwise
(1.31)

and

λ̂∗ =
∑

i,j,i /=j V̂ar(bij)∑
i,j,i /=j b2

ij

. (1.32)

For the list of constrained estimators and computation of V̂ar(bij), we refer to
Ref. [3]. Overall, GGM is an appealing approach for the reverse engineering of undi-
rected biological networks. It is theoretically sound, easy to understand and compu-
tationally efficient. GGM is particularly suitable to tackle low throughput data, where

www.it-ebooks.info

http://www.it-ebooks.info/

20 A SURVEY OF COMPUTATIONAL APPROACHES

the number of samples is much larger than the number of variables. For high through-
put molecular profiling data, the distribution-free shrinkage estimator guarantees to
estimate an invertible covariance matrix. However, an edge in a network reconstructed
via GGM only represents a possible functional relationship between corresponding
genes without any indication of gene regulatory mechanisms.

Reconstruction of biological networks is fundamental in understanding the origin
of various biological phenomenon. The computational approaches presented above
play a crucial role in achieving this goal. However, the complexity arising due to
a large number of variables and many hypothetical connections introduces further
challenges in gaining biological insights from a reconstructed network. It is neces-
sary to uncover the structural arrangement of a large biological network by identifying
tightly connected zones of the network representing functional modules. In the follow-
ing section, we present some popular network partitioning algorithms, which allow
us to infer the biomolecular mechanisms at the level of subnetworks.

1.5 PARTITIONING BIOLOGICAL NETWORKS

Often a reconstructed network is too broad of a representation for a specific biologi-
cal process. The partitioning of biological networks allows for the careful analysis of
hypothesized biological functional units. Users may choose to partition high fidelity
biological networks obtainable from a variety of sources such as the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) database [75]. There is no universal definition
for partitions, clusters, and especially communities. However, in this chapter we de-
fine a partition as a subnetwork (subgraph) of the given network (graph) such that
(1) the internal connections of the partition from node to node are strong and (2) the
external connections between other partitions are weak.

There are two major classes of partitioning algorithms called graph clustering
algorithms and community detection algorithms [22]. Graph clustering algorithms
originated from computer science and other closely related fields. Community detec-
tion algorithms have their origin in sociology, which now encompass applications in
applied mathematics, physics, and biology.

For graph clustering algorithms, the number of clusters is a user-specified parame-
ter. A graph clustering algorithm must always return the specified number of clusters
regardless of whether the clusters are structurally meaningful in the underlying graph.
These algorithms were developed for specific applications, such as placing the parts
of an electronic circuit onto printed circuit cards or improving the paging properties
of programs [23]. For other applications such as finding the communities of a bio-
logical network, specifying a number of clusters beforehand may be arbitrary and
could result in an incorrect reflection of the underlying network topology. However,
many techniques found in graph clustering algorithms have been modified to fulfill the
needs of community detection algorithms rendering knowledge of graph clustering
algorithms to be quite useful.

Community detection algorithms assume that the network itself divides into par-
titions or communities. The goal of a researcher is to find these communities. If the

www.it-ebooks.info

http://www.it-ebooks.info/

PARTITIONING BIOLOGICAL NETWORKS 21

given network does not have any communities, this result is quite acceptable and yields
valuable information about the network’s topology. Community detection algorithms
do not forcibly divide the network into partitions as opposed to graph clustering al-
gorithms. On the contrary, community detection algorithms treat the communities as
a network property similar to the degree distribution of a network.

The partitioning of biological networks is better served via community detection
algorithms. Since there are instances where community detection algorithms adopt
techniques from graph clustering algorithms, the study of graph clustering algorithms
in and of itself is quite fruitful. We will provide a brief overview of the Kernighan–
Lin algorithm [23] which is considered as one of the best clustering algorithms. The
remainder of this chapter will then focus on community detection algorithms.

1.5.1 Directed and Undirected Networks

Most algorithms for network partitioning take an undirected network as input. In
particular, the focus of community detection algorithms on undirected networks may
have originated from the nature of social networks, which depict relationships between
individuals that are by nature undirected. Often times, it is not trivial to extend an
algorithm to handle both directed and undirected networks [21]. Many users simply
ignore edge direction when using an undirected algorithm. However, vital information
is often lost when ignoring the direction of edges as in the case of signaling pathways
in biological systems. Ignoring edge direction causes the E. coli network to have six
communities as opposed to none as seen in Figure 1.7.

1.5.2 Partitioning Undirected Networks

There are many algorithms that take undirected networks as input. For the purposes
of this chapter, we will mainly focus on community detection algorithms. For graph
clustering algorithms, we will explore the well-known Kernighan–Lin algorithm [23].

FIGURE 1.7 The E. coli network from the DREAM Initiative [39]. (a) The E. coli network
is partitioned into six communities by ignoring edge direction. (b) The same E. coli network
does not divide into any communities when edge direction is used. The disparity between the
results is a strong indicator of the significance of edge direction. In both cases the appropriate
version of Infomap was run for 100,000 iterations with a seed number of 1.

www.it-ebooks.info

http://www.it-ebooks.info/

22 A SURVEY OF COMPUTATIONAL APPROACHES

We will present the Girvan–Newman algorithm [25], Newman’s eigenvector method,
Infomap [27], and the clique percolation method [26].

To compare different algorithms, it is very helpful to have some gold standard
networks whose true community divisions are known. A variety of different bench-
marks are mentioned by Fortunato [21]. We choose a small gold standard network
as a benchmark to illustrate the results of the algorithms presented. In particular, we
select Zachary’s karate club [76] as illustrated in Figure 1.8. For a period of 2 years,
Zachary studied 34 karate club members. During this period, a disagreement arose
between the club’s instructor and the club’s administrator. The club’s instructor then
left taking approximately half of the original club members. Zachary constructed a
weighted network of their friendships, but we will use an unweighted network for
our algorithm illustrations. Many community algorithms often use Zachary’s network
as a gold standard where they illustrate how accurate their algorithms could predict
the eventual split of the club. Results for the Girvan–Newman algorithm, Newman’s
eigenvector method, Infomap, and the clique percolation method are presented in
Figures 1.8 and 1.9.

1.5.2.1 Kernighan–Lin Algorithm
The Kernighan–Lin algorithm [23] is a famous algorithm used for network clustering.
Developed in 1970, the Kernighan–Lin algorithm is still used often as a subroutine
for more complex algorithms. The Kernighan–Lin algorithm was initially developed
in order to partition electronic circuits on boards. Connections between these circuits
are expensive so minimizing the number of connections is key. More formally, the
Kernighan–Lin algorithm is a heuristic method that deals with the following combina-
torics problem: given a weighted graph G, divide the |V | vertices into k partitions no
larger than a user-specified size m such that the total weight of the edges connecting
the k partitions is minimized [23].

The major approach behind the algorithm is to divide the undirected graph G of
|V | = n1 + n2 vertices into two subgraphs X and Y , |X| = n1 and |Y | = n2. Let cij

be the cost from vertex i to vertex j. All cii equal zero (no self-loops are allowed in G)
and cij = cji. The goal is to minimize the cost C of the edges connecting subgraphs
X and Y , where for x ∈ X and y ∈ Y

C =
∑
X×Y

cxy. (1.33)

For each node x ∈ X, let

Dx =
∑
yεY

cxy −
∑
zεX

cxz (1.34)

be the difference between the intracluster costs between vertex x and all vertices y,
and the intercluster costs between vertex x and all other vertices in X. Dy is defined
in a similar manner. Let

g = Dx + Dy − 2cxy (1.35)

www.it-ebooks.info

http://www.it-ebooks.info/

F
IG

U
R

E
1.

8
(a

)
T

he
tr

ue
pa

rt
iti

on
in

g
of

Z
ac

ha
ry

’s
ka

ra
te

cl
ub

[7
6]

.
N

ew
m

an
’s

ei
ge

nv
ec

to
r

m
et

ho
d

al
so

re
tu

rn
s

th
is

pa
rt

iti
on

.
(b

)
T

he
G

ir
va

n–
N

ew
m

an
al

go
ri

th
m

m
is

la
be

ls
a

si
ng

le
no

de
.(

c)
In

fo
m

ap
m

is
la

be
ls

tw
o

no
de

s.
It

al
so

su
bd

iv
id

es
th

e
co

m
m

un
ity

sh
ad

ed
w

hi
te

in
to

tw
o

su
bc

om
m

un
iti

es
.

23

www.it-ebooks.info

http://www.it-ebooks.info/

24 A SURVEY OF COMPUTATIONAL APPROACHES

FIGURE 1.9 The partitioning of Zachary’s karate club using CFinder [78]. There are one
5-community, three 4-communities, and three 3-communities. The 3-communities represent
the most nodes with the exception of nodes 10 and 12. It also inaccurately places most of the
opposing karate club members in a single community where the rival leaders represented by
nodes 34 and 1 are in the same community.

be the gain for swapping two nodes x and y between their respective clusters. Let X

and Y be the initial partitions of the graph G with |X| = n1, |Y | = n2, the number of
vertices |V | = n1 + n2 and n1 ≤ n2. The algorithm is as follows:

Algorithm 1.1

Kernighan–Lin Algorithm

Input: An undirected network G and initial guesses for
subnetworks X and Y.

Output: Two subnetworks X and Y such that cost C is minimized.
do {

Calculate D values for all xεX, yεY

Let X
′ = X, Y

′ = Y

For i = 1 to n1 {
Select xεX

′
and yεY

′
such that gi is maximized.

Let x′
i = x and y′

i = y.
Remove x from X

′
and y from Y

′
.

Update the D values of the remaining elements.

www.it-ebooks.info

http://www.it-ebooks.info/

PARTITIONING BIOLOGICAL NETWORKS 25

}

Select k such that G =
k∑

i=1

gi is maximized.

if G
 0
swap the 1 to k x

′
i’s and y

′
i’s between X and Y

} until G ≤ 0

The Kernighan–Lin algorithm has complexity O
(|V |2 log |V |). It should be noted

that the Kernighan–Lin algorithm is very sensitive to the initial guesses for the sub-
networks X and Y . A random choice for initialization may yield a poor partition. It
is often the case that a different algorithm provides an initial X and Y whereas the
Kernighan–Lin algorithm improves upon the given X and Y . From the standpoint
of biological networks, it may be highly unlikely to find a good guess for the ini-
tial partitions X and Y , especially if prior knowledge is lacking. Furthermore, the
Kernighan–Lin algorithm by its nature imposes a minimum number of clusters. If a
biological network does not possess any partitions, it should not be forced to have
artificial partitions. Nevertheless, the Kernighan–Lin algorithm provides inspiration
for a postprocessing method of communities introduced by Newman [22]. This post-
processing method can be used for different community algorithms as long as they
optimize a quality function F . Newman uses modularity as his quality function, which
will be introduced in Section 1.5.2.3.

Algorithm 1.2

Community Optimization

Input: An undirected network G and initial guesses for
subnetworks X and Y.

Output: Two subnetworks X and Y such that the quality
function F is maximized.

do {
For i = 1 to |V | {

Move the vertex v from X to Y or Y to X such that
the increase in F is maximized. If no such v exists,
then select v such that the decrease in F is
minimized.

Remove the vertex v from any further consideration.
Store the intermediate partitioning results of the graph

G into subnetworks Xi and Yi as Pi.
}
Select the partition Pi that maximizes the increase in F.
Let X = Xi and Y = Yi

} until F can no longer be improved.

1.5.2.2 Girvan–Newman Algorithm
The Girvan–Newman algorithm [25] is one of the most well-known algorithms
available for hierarchical clustering. These machine-learning algorithms are very

www.it-ebooks.info

http://www.it-ebooks.info/

26 A SURVEY OF COMPUTATIONAL APPROACHES

popular and provide users with partitions of many different sizes. There are two
major flavors in hierarchical clustering algorithms: agglomerative clustering and
divisive clustering.

The Girvan–Newman algorithm [25] follows the spirit of divisive clustering al-
gorithms. The Girvan–Newman algorithm departs from previous approaches by fo-
cusing on edges that serve as “bridges” between different communities. These edges
have a high value for edge betweenness, which is an extension of vertex betweenness
initially proposed by Freeman [77]. The authors defined three versions of edge be-
tweenness: shortest-path betweenness, current-flow betweenness, and random-walk
betweenness.

Agglomerative clustering is a bottom-up approach. Each node starts in its own
cluster. Using a user-specified distance metric, the two most similar partitions are
joined. This process continues until all nodes end up in a single partition. Agglom-
erative clustering algorithms are strong at finding the core of different communities
but are weak in finding the outer layers of a community. Agglomerative clustering
has also been shown to produce incorrect results for networks whose communities
are known [33]. Divisive clustering algorithms, on the other hand, use a top-down
approach. Such algorithms begin with the entire network as their input and recursively
split the network into subnetworks. This process continues until every node is in its
own partition as seen in Figure 1.10.

The focus for this section will be shortest-path betweenness as it provides the
best combination of performance and accuracy [33]. In practice, it is also the most
frequently used form of edge betweenness. To calculate shortest-path betweenness,
all shortest paths between all pairs of vertices are calculated. For a given edge e, its
betweenness score is a measure of how many shortest-paths possess edge e as a link.
The authors provide a O

(|V ||E|) algorithm to calculate the shortest-path betweenness,
where |V | is the number of vertices and |E| is the number of edges [33]. Overall, the
Girvan–Newman algorithm has complexity O

(|V ||E|2). The algorithm is as follows:

FIGURE 1.10 A dendrogram typically created by a divisive algorithm. The circles at the
bottom represent the nodes of the graph. Using a top-down approach, the original graph is split
until each node belongs in its own partition. The resulting number of partitions depends on where
the dendrogram is cut . At the given cut line, there are two partitions colored white and black,
respectively. Determining the proper cut line for a dendrogram is an active area of research.

www.it-ebooks.info

http://www.it-ebooks.info/

PARTITIONING BIOLOGICAL NETWORKS 27

Algorithm 1.3

Girvan–Newman Algorithm

Input: An undirected, unweighted network G.
Output: A hierarchy of different communities. The final number of

communities is determined by where the dendrogram is cut.
For all edges in the graph, compute the shortest-path betweenness

scores.
For i = 1 to |E| {

Remove the edge whose shortest-path betweenness score is
maximal.

Recompute the shortest-path betweenness scores for all edges
affected by the removal.

}

The most important step in the Girvan–Newman algorithm is to recalculate the
shortest-path betweenness scores. Once an edge is removed, the underlying network
topology changes and so do the shortest paths of the network. In some cases an edge
that had minimum shortest-path betweenness score in one iteration possesses the
maximum score the very next iteration. Figure 1.11 illustrates the Girvan–Newman
algorithm for a simple network.

The Girvan–Newman algorithm is very intuitive in that edges with a high edge-
betweenness score serve as connections between different communities. It returns a
varying number of communities based on where one cuts the dendrogram allowing for
a more detailed analysis. It focuses on the flow of information in a network as shortest
paths are one way to model the information flow of a network [21]. For biological
networks this allows a researcher to examine a number of hypothesized functional
biological units. There may be different biological insights by examining a larger
community and its subcommunities. However, it is often the case that a researcher
only seeks the best partitioning available among all candidate partitions. This leads to
a major drawback concerning the Girvan–Newman algorithm as identifying where to
cut the dendrogram to retrieve the final communities is an open question, especially if
the number of communities is not known a priori. To remedy this situation, the authors
introduced the concept of modularity, which will be discussed in more detail in Section
1.5.2.3. Another potential drawback associated with the Girvan–Newman algorithm
is the lack of overlapping communities. In the case of biological networks, the lack

FIGURE 1.11 (a) The original graph consisting of six nodes and two communities. The
central edge has the highest shortest-path betweenness score. (b) The network is divided into
two communities after removal of the central edge.

www.it-ebooks.info

http://www.it-ebooks.info/

28 A SURVEY OF COMPUTATIONAL APPROACHES

of such a feature may be unreasonable as a gene may simultaneously participate in
many different biological processes.

1.5.2.3 Newman’s Eigenvector Method
In the preceding section, Newman and Girvan [33] introduced a new quality function
called modularity in which a quality function assigns a score to a partitioning of a graph
[21]. Whereas the Girvan–Newman algorithm used modularity to determine where
to cut the dendrogram, there are many methods that optimize modularity directly
including greedy techniques, simulated annealing, extremal optimization, and spectral
optimization [21].

A major driving force behind modularity is that random graphs do not possess
community structure [21]. Newman and Girvan proposed a model in which the orig-
inal edges of the graph are randomly moved, but the overall expected degree of each
node matches its degree in the original graph. In other words, modularity quantifies
the difference of the number of edges falling within communities and the expected
number of edges for an equivalent random network [22]. Modularity can be either
negative or positive. High positive values of modularity indicate the presence of com-
munities, and one can search for good divisions of a network by looking for partitions
that have a high value for modularity. There are various modifications and formulas
for modularity, but the focus for this section will be the modularity introduced by
Newman [22].

For Newman’s eigenvector method, Newman reformulates the problem by defin-
ing modularity in terms of the spectral attributes of the given graph. The eventual
algorithm is very similar to a classical graph clustering algorithm called Spectral Bi-
section [21]. Suppose the graph G contains n vertices. Given a particular bipartition
of the graph G, let si = 1 if vertex i belongs to the first community. If vertex i belongs
to the second community, then si = −1. Let Aij denote the elements of the adjacency
matrix of G. Normally, Aij is either 0 or 1, but it may vary for graphs where multiple
edges are present. Placing edges at random in the network yields a number of expected
edges kikj/2m between two vertices i and j, where ki and kj are the degrees of their
respective vertices. The number of undirected edges in the network is m = ∑

ij Aij/2.
The modularity Q is then defined as

Q = 1

4m

∑
ij

(
Aij − kikj

2m

)
sisj. (1.36)

As evident from Equation 1.36, a single term in the summation of modularity
equals zero if vertices i and j belong to different communities. The modularity Q can
be written in condensed form as

Q = 1

4m
sT B s, (1.37)

www.it-ebooks.info

http://www.it-ebooks.info/

PARTITIONING BIOLOGICAL NETWORKS 29

where the column vector s has elements si. Here, B is a symmetric matrix called the
modularity matrix with entries equal to

Bij = Aij − kikj

2m
. (1.38)

The modularity matrix B has special properties akin to the graph Laplacian [22]. Each
row and column sums to zero yielding an automatic eigenvector of (1, 1, . . .) with
eigenvalue 0. Modularity can now be rewritten as

Q = 1

4m

n∑
i=1

(uT
i · s)2βi, (1.39)

where ui is a normalized eigenvector of B with eigenvalue βi. Let uM denote the
eigenvector with the largest eigenvalue βM . Modularity can thus be maximized by
choosing the values of s, where siε{−1, 1}, that maximize the dot product uT

M · s. This
occurs by setting si to 1 when the corresponding element uMi
 0 and −1 otherwise.
Newman’s eigenvector method is as follows:

Algorithm 1.4

Newman’s Eigenvector Method

Input: An undirected network G.
Output: Two partitions of graph G such that the modularity Q is

maximized.
Find the eigenvector uM corresponding to the largest eigenvalue

βM of the modularity matrix B.
Let si = 1 if uMi

 0 and −1 otherwise.
Return two partitions X and Y. X consists of all nodes whose

corresponding si equal to 1. Y consists of all nodes whose
corresponding si equal to −1.

Additional communities can be found by recursively applying Algorithm 1.4 to the
discovered communities after a modification to Q [22]. Using the power method to
find uM , Newman’s eigenvector method has complexity O

(|V |2 log |V |), where |V | is
the number of vertices in the graph [21]. Newman’s eigenvector method excels in its
speed. Another useful property of Newman’s eigenvector method involves the values
of uM . The value |uMi | corresponds directly to the strength of node i’s membership in
its cluster. Newman’s eigenvector method also possesses a built-in stopping criterion.
For a given graph G, if there are no positive eigenvalues, then G is a community in and
of itself. Its major drawback is the same as spectral bisection where the algorithm gives
the best results for the initial bisection of the graph [21]. Another major drawback
involves the use of modularity as a quality function.

Fortunato [21] lists three major flaws for modularity. First, there are random graphs
that may have partitions with high modularity, which undermines the very concept
behind modularity. Second, modularity-based methods may suffer from a resolution
limit. In other words, meaningful communities that are small with respect to the overall

www.it-ebooks.info

http://www.it-ebooks.info/

30 A SURVEY OF COMPUTATIONAL APPROACHES

graph may be subsumed by larger communities. Finally, it has been shown that there
exists an exponential number of partitions that have a high modularity, especially for
networks possessing a strong hierarchical structure as most real networks do. Finding
the global maximum may be computationally intractable.

1.5.2.4 Infomap
The inspiration behind Infomap [27] is to identify the partitions of a graph using as
little information as needed to provide a coarse-grain description of the graph. Infomap
uses a random walk to model information flow. A community is defined as a set of
nodes for which the random walker spends a considerable time traversing between
them. If the communities are well-defined, a random walker does not traverse between
different communities often. A two-level description for a partition M is used where
unique names are given to the communities within M, but individual node names
across different communities may be reused. It is akin to map design where states
have unique names but cities across different states may have the same name. The
names for the communities and nodes are generated using a Huffman code. A good
partitioning of the network thus consists of finding an optimal coding for the network.
The map equation simplifies the procedure by providing a theoretical limit of how
concisely a network may be described given a partitioning of the network. Using
the map equation, the actual codes for different partitions do not have to be derived
in order to choose the optimal among them. The objective becomes minimizing the
minimum description length (MDL) of an infinite walk on the network. In other words,
the MDL consists of the Shannon entropy of the random walk between communities
and within communities [21]. The map equation is as follows:

L(M) = qH(Q) +
m∑

i=1

piH(Pi). (1.40)

In the above equation, m is the number of communities. q is defined as

q =
m∑

i=1

qi, (1.41)

where each qi is the probability per step that the random walker exits the ith commu-
nity. H(Q) is the movement entropy between communities and is calculated as

H(Q) =
m∑

i=1

qi∑m
j=1 qj

log
qi∑m

j=1 qj

. (1.42)

The weight of the entropy of movements within the ith community, denoted by pi, is
defined as

pi = qi +
∑
αεi

pα. (1.43)

www.it-ebooks.info

http://www.it-ebooks.info/

PARTITIONING BIOLOGICAL NETWORKS 31

Each pα for node α in the ith community is the ergodic node visit frequency, that
is, the average node visit frequencies for a random walk of infinite length. This is
done using the power method. The entropy of movements within the ith community
is calculated as

H(Pi) = qi

qi + ∑
βεi pβ

log
qi

qi + ∑
βεi pβ

+
∑
αεi

pα

qi + ∑
βεi pβ

log
pα

qi + ∑
βεi pβ

.

(1.44)

Algorithm 1.5

Infomap

Input: An undirected network G.
Output: A partition M such that Equation 1.40 is minimized.
Assign each node into its own module.
do {

Visit all of the modules in a random sequential order where at
each module i {
Combine module i to a neighboring module such that the

Equation 1.40 decreases the most.
If no such move exists, leave module i as is.

}
} until no move reduces Equation 1.40 any further.

Algorithm 1.5 is the core of Infomap version presented in [36]. There are two
further subroutines that improve upon the results of the main algorithm listed in [36].
The three routines run for a user-specified number of iterations. The result returned is
the best partition found among all of the iterations. It is important to note that while
modularity focuses on the pairwise relationships between nodes, Infomap focuses on
the flow of information within a network [21]. This underlying difference may often
cause modularity-based methods and Infomap to generate different partitions. As
Infomap uses a stochastic algorithm, it is not known how many iterations are needed
before a good partitioning is found.

1.5.2.5 Clique Percolation Method
The clique percolation method [26] is a community detection algorithm that allows
communities to share nodes. This feature is quite significant in the case of biological
networks as a node in such networks often participates in many different biological
processes. The inspiration behind the clique percolation method is that nodes within
a community are highly connected to one another such that they form a clique. A
clique is a subgraph in which any two nodes are connected by an edge. Between two
different communities, the edges are few.

The authors define a k-clique community as a union of all adjacent k-cliques [26].
A k-clique is a complete subgraph consisting of k nodes such that there exists an edge
between any two nodes in the subgraph. If two k-cliques share k − 1 nodes, they are
said to be adjacent. Thus, a k-clique community is the union of all adjacent k-cliques.
It is also important to define connected components as the final output consists of

www.it-ebooks.info

http://www.it-ebooks.info/

32 A SURVEY OF COMPUTATIONAL APPROACHES

connected components. A graph is said to be connected if between any two vertices
there exists at least one path connecting them [21]. A connected component is a
maximal connected subgraph of a given graph [21]. A key aspect of the algorithm is
building an n × n clique–clique overlap matrix M, where n is the number of maximal
cliques. Each Mij in the matrix represents the number of nodes shared by maximal
clique i and maximal clique j. The algorithm is as follows:

Algorithm 1.6

Clique Percolation Method

Input: An undirected, unweighted network G and the size k of the
k-cliques to find.

Output: A set of k-cliques communities.
Find all of the maximal cliques of the graph G.
Build a n × n clique-clique overlap matrix M.
Set all off-diagonal entries of matrix M less than k − 1 to zero.
Set all diagonal entries of M less than k to zero.
Return the connected components remaining in the matrix M as the

k-clique communities.

The major attraction of the clique percolation method is its ability to find overlap-
ping communities. More importantly, the clique percolation method seems to possess
the quality of making a clear distinction between graphs with community structure
and random graphs [21]. A major drawback of the clique percolation method is that
not all graphs have all of their nodes participating in a k-clique community [21]. It is
often the case that leaf nodes are left out of communities. Another potential drawback
involves the choice of k. One may not know a priori the value of k which yields
meaningful structures, but the structure of the algorithm allows for finding multiple
k-clique communities using the clique–clique overlap matrix M rather easily. Fur-
thermore, finding the maximal cliques of a graph scales exponentially with the size
of the graph. While the complexity of finding maximal cliques is known, there are
additional factors involved for which the scalability of the clique percolation method
cannot be expressed in closed form [21].

1.5.3 Partitioning Directed Networks

Algorithms which can take directed networks as input are often extensions of their
undirected counterparts with additional criteria added to handle directed networks.
Among the algorithms mentioned in the preceding section for undirected networks,
Newman’s eigenvector method, Infomap, and the clique percolation method have
extensions allowing them to accept directed networks as input. Unfortunately, it is
not always the case that the directed version of an algorithm is as rigorously developed
as its undirected counterpart as will be seen below.

1.5.3.1 Newman’s Eigenvector Method
Modularity-based methods have proven to be some of the most popular community de-
tection algorithms. Most previous methods ignored edge direction when encountering

www.it-ebooks.info

http://www.it-ebooks.info/

PARTITIONING BIOLOGICAL NETWORKS 33

a directed network. As seen in Figure 1.7, ignoring edge direction could lead to results
that diverge greatly from the potential solution. Leicht and Newman [79] attempted
to fill the gap for modularity-based algorithms by tweaking some key concepts for
Newman’s eigenvector method. Most of the notations used are the same as presented
in Section 1.5.2.3 except where noted otherwise. Leicht and Newman first begin by
modifying Equation 1.37 into

Q = 1

2m
sT B s, (1.45)

where s remains the column vector introduced in Section 1.5.2.3. The modularity
matrix B is tweaked to account for edge direction and is given by

Bij = Aij − kin
i kout

j

m
, (1.46)

where Aij is 1 in the presence of an edge from node j to node i and 0 otherwise. The
term kout

j is the out-degree or the number of edges leaving node j, kin
i is the in-degree

or the number of edges entering node i, and m is the total number of edges in the
adjacency matrix of the graph G.

The modularity matrix B as presented in Equation 1.46 is asymmetrical, which
may cause technical problems later on. To remedy this situation, the matrix B is
replaced in Equation 1.45 with the sum of B and its transpose ensuring symmetry.
Equation 1.45 now becomes

Q = 1

4m
sT (B + BT)s. (1.47)

The algorithm to partition the graph G is essentially the same as Algorithm 1.4
except that the modularity matrix B defined in Equation 1.38 has been replaced with
a symmetrical matrix B + BT , where the latter B is defined in Equation 1.46. An
advantage to this method is that essentially the underlying Newman’s eigenvector
method can be used unchanged except for some minor tweaks to account for edge
direction. However, the given definition of modularity to incorporate edge direction is
fundamentally flawed. Kim et al. [80] illustrated the shortcoming of the new definition
for modularity as seen in Figure 1.12.

FIGURE 1.12 The two networks illustrate the problem with the directed version of modu-
larity introduced by Leicht and Newman [79]. The in-degrees and out-degrees for nodes X and
X′ are the same. The same scenario holds for Y and Y ′. The result is that the directed version
of modularity is unable to distinguish between the two given networks [80].

www.it-ebooks.info

http://www.it-ebooks.info/

34 A SURVEY OF COMPUTATIONAL APPROACHES

FIGURE 1.13 Rosvall and Bergstrom compared the performance of modularity and the map
equation for the network illustrated above. Each method returned four different communities
(two shaded black, one gray, and one white). On the left the network was partitioned by
maximizing modularity. The corresponding value of the map equation is also listed. On the
right the network was partitioned by minimizing Equation 1.40. In both partitions edges labeled
with a 2 weigh twice as much as the unlabeled edges. For this simple network, one may observe
that the map equation models the network’s flow of information better than modularity.

1.5.3.2 Infomap
The extension of Infomap from the undirected case to the directed case is very straight-
forward. In the directed version of Infomap, a “teleportation probability” τ is intro-
duced. With probability τ, the random walker jumps to a random node anywhere in
the graph. This modification changes the undirected random walker into a directed
“random surfer” akin to Google’s PageRank algorithm. The default choice of 0.15 for
τ is also akin to the damping factor d = 0.85 in Google’s PageRank algorithm [27].
While the map equation remains the same, the exit probabilities qi where q = ∑m

i=1 qi

and m equals the number of communities, must be updated to include the contribution
of τ. The underlying algorithm remains the same. For a sample comparison between
the directed versions of modularity and Infomap, please refer to Figure 1.13.

1.5.3.3 Clique Percolation Method
In order to make the Clique percolation method work for directed networks, Palla et
al. [34] extend the notion of k-cliques to directed k-cliques. For a directed acyclic
graph, the edges of a directed k-clique always point from a node with a higher order
to a node with a lower order. Equivalently, all nodes within the specified k-clique have
different orders. The order of a node i within a k-clique is simply the sum of all edges
leaving node i to the other nodes within the given k-clique. Palla et al. [34] illustrated
a directed 4-clique as seen in Figure 1.14.

All other terminologies introduced in Section 1.5.2.5 also apply in this case. For
example, two directed k-cliques are adjacent if they share k − 1 nodes. However,
the directed case is more complicated as there are 3k(k−1)/2 ways in which links

www.it-ebooks.info

http://www.it-ebooks.info/

DISCUSSION 35

FIGURE 1.14 (a) A directed 4-clique graph without any cycles. The node labels refer to the
order of the nodes which is the same as the number of edges leaving the node. (b) More than one
node have the same order. The graph is not a directed 4-clique [34]. (c) The 3-communities of
the E. coli network found using CFinder [78]. Many nodes in the E. coli network were left out
of the final partitioning. Such an occurrence may prove problematic for analyzing biological
networks in general.

c

d

f a

h g

e

b c d

a

h g

e

f

b
c

e

g

h

a a

c

e

g

c

a

g

bb

1 2 3 4 5

b

FIGURE 1.15 (1) The underlying network topology. (2) a is selected as the start node. The
in-neighbors of a are placed in a container above a. The out-neighbors are placed in a container
below a. (3) Select a new node from either container. In this case, b is selected. d and f are
removed because they are not neighbors of b. e is placed in its own container as it is between
a and b. (4) c is added. h is removed as it is not a neighbor of c. (5) g is added. Since e is not a
neighbor of g, e is removed [34].

of a complete subgraph of size k can be directed [34]. The algorithm consists of the
following two steps (1) the directed cliques of a given node are found and (2) the node
and its links are removed from the network. Figure 1.15 from Ref. [34] illustrates the
underlying algorithm. For graphs with cycles and a more detailed explanation of the
algorithm, we refer to Ref. [34].

1.6 DISCUSSION

In this chapter, we discussed a number of approaches for the reconstruction and par-
tition of biological networks. We considered the case of both directed and undirected

www.it-ebooks.info

http://www.it-ebooks.info/

36 A SURVEY OF COMPUTATIONAL APPROACHES

biological networks in each of the above classes of problems. Network reconstruc-
tion algorithms presented in this chapter were further categorized based on the type of
measurements used in the inference procedure. The type of measurements which we
considered were gene expression data and symbol data comprising of gene sets. Gene
expression data are numerical matrices containing gene expression levels measured
from different experiments, whereas gene sets are sets of genes and do not assume
the availability of the corresponding gene expression levels.

For the reconstruction of directed networks, we presented six approaches Boolean
networks, probabilistic Boolean networks, Bayesian networks, cGraph, frequency
method, and NICO. Among these approaches Boolean networks, probabilistic
Boolean networks, and Bayesian networks accommodate gene expression data,
whereas cGraph, frequency method, and NICO are suitable to infer the underlying
network topologies from gene sets. For the reconstruction of undirected biological
networks from gene expression data, we presented two approaches relevance net-
works and graphical Gaussian models. Nonetheless, the aforementioned algorithms
for network inference using gene expression data are also applicable when the inputs
are given in the form of gene set compendiums and vice versa. For instance, in or-
der to apply a gene set based approach on gene expression data, an additional data
discretization step can be incorporated to derive gene sets. Indeed, genes expressed
in an experimental sample discretized using binary labels correspond to a gene set.
Similarly, a gene set can be naturally represented as a binary sample by considering
the presence or absence of a gene in the set. This equivalence can be used to infer a
Bayesian network, Boolean network, or probabilistic Boolean network from a gene
set compendium, and to infer mutual information networks, for example, mutual in-
formation version of relevance networks which accommodate discrete measurements.
Similarly, gene sets obtained after discretizing gene expression data can be utilized
to infer a network using NICO or cGraph. Overall, the equivalent representation of a
gene set compendium as binary discrete data makes the network inference approaches
applicable for both the types of input, gene sets or gene expression data. However, the
approaches differ in their output, for example, directed versus undirected networks,
and their computational efficiency. In general, the computational inference of undi-
rected networks, for example, relevance networks and graphical Gaussian models is
more efficient, as such approaches are based on estimating pairwise associations or
similarities. For example, relevance networks measure the strength of pairwise interac-
tion in terms of Pearson’s correlation or mutual information, whereas graphical Gaus-
sian models present a more appealing model by taking only direct interactions into
account and use partial correlations to estimate the strength of pairwise associations.
The two network inference approaches are frequently used in the field of information
theory, pattern analysis and machine learning. In the inference of directed networks,
Boolean networks and probabilistic Boolean networks present computationally effi-
cient and simpler models, in comparison to Bayesian networks. However, the use of
Boolean functions in both Boolean networks and probabilistic Boolean networks may
cause the oversimplification of gene regulatory mechanisms. Nonetheless, Boolean
networks find applications in many fields including biological systems, circuit theory,
and computer science, for example, see Refs. [81,82]. Bayesian networks provide a

www.it-ebooks.info

http://www.it-ebooks.info/

DISCUSSION 37

sophisticated probabilistic modeling approach to infer gene regulatory mechanisms.
As Bayesian networks suffer from nontrivial computational complexity, heuristics are
applied to reduce the size of the search space of all possible Bayesian networks defined
for a given number of nodes. Bayesian networks are used in a wide range of fields
including medicine, document classification, information retrieval, image process-
ing, and financial analysis. Among gene set based approaches, cGraph and frequency
method are computationally efficient but they make stringent assumptions in the un-
derlying models. For instance, cGraph adds a weighted edge between every pair of
genes which appear in some gene set, whereas frequency method assumes a prior
availability of the two end nodes in each gene set and directed edges involved in the
corresponding paths. Expectation–maximization based NICO assumes a more gen-
eral case and reconstructs the underlying network by inferring the order information
for each unordered gene set. As the computational complexity of the approach grows
exponentially with increase in the lengths of gene sets, an importance sampling based
approximation of E-step has been proposed, which guarantees a polynomial time con-
vergence of the EM algorithm. The above algorithms find applications in many real-
world scenarios such as sociology, communication networks, and cognitive science.

We reviewed a variety of algorithms for network partitioning. The network parti-
tioning algorithms were categorized as graph clustering algorithms and community
detection algorithms. Graph clustering algorithms are applicable to very large-scale
integration, distributing jobs on a parallel machine, and other applications found in
computer science. Community detection algorithms, on the other hand, are more
applicable to biological and social networks.

For graph clustering algorithms, we reviewed the well-known Kernighan–Lin al-
gorithm. The Kernighan–Lin algorithm has complexity O

(|V |2 log |V |). Although
the Kernighan–Lin algorithm may not be directly applicable to biological networks,
its “descendant,” Algorithm 1.2, is directly applicable as a postprocessing step for
many community detection algorithms [22].

The first community algorithm we presented was the Girvan–Newman algorithm
with complexity O

(|V ||E|2). The essence of the Girvan–Newman algorithm is that
edges between communities have high edge-betweenness scores. By focusing on
edge-betweenness, the Girvan–Newman algorithm focuses on the flow of the network
as opposed to the immediate connection between nodes. Its major drawback is the
lack of a proper criterion to determine the cut line of a dendrogram. Modularity was
used to remedy the situation, but as seen in Section 1.5.2.3, modularity itself has its
own drawbacks. An interesting solution may be replacing modularity as a quality
function with the map equation introduced by Rosvall.

Next, we presented Newman’s eigenvector method. This method is quite interest-
ing as by defining modularity via Equation 1.37, the modularity matrix B defined in
Equation 1.38 takes the position of the graph Laplacian in the spectral bisection algo-
rithm. Newman’s eigenvector method is considered to be quite fast with complexity
O

(|V |2 log |V |). The method focuses on the degrees and connections of immediate
nodes as opposed to the flow of information in a given graph. A more useful as-
pect is that the value of |uMi | for a node i corresponds directly to its participation
strength in its community. The major drawback of Newman’s eigenvector method is

www.it-ebooks.info

http://www.it-ebooks.info/

38 A SURVEY OF COMPUTATIONAL APPROACHES

the same as spectral bisection method in which its core strength lies in finding the
initial bipartition of a graph. There are also drawbacks involved with the choice of
modularity as the quality function as seen in Section 1.5.2.3. Finally, extending Equa-
tion 1.37 to its directed counterpart Equation 1.45 does not incorporate edge direction
correctly.

We then presented Infomap that utilizes information theory to compress good par-
titions and describe them using the least amount of bits possible. While modularity
concentrates on the pairwise relationships between nodes, Infomap focuses on the
flow of information within a network similar to the original Girvan–Newman algo-
rithm. Its implementation for directed networks seems the most rigorous of all of the
implementations presented. Since Infomap uses a stochastic algorithm, the number
of iterations that are needed before a good partitioning is found is unknown.

Finally, we presented the clique percolation method. The clique percolation method
is suitable for partitioning biological networks as it allows for overlap between differ-
ent communities. It has some drawbacks as it may not place all nodes in a community,
especially leaf nodes. The complexity of the clique percolation method cannot be ex-
pressed in closed form. Moreover, for the case of directed networks, the definition for
directed k-clique is rather arbitrary.

Network reconstruction and partitioning are two fundamental problems in compu-
tational systems biology, which aim to provide a view of the underlying biomolecular
activities at a global or local level. In general, the choice of a network reconstruction
approach depends on various factors, for example, type of measurements, number
of variables, sample size, amount of prior knowledge, and the type of interactions
considered in an analysis. Similarly, network partitioning is dependent on the number
of clusters overlapping with different clusters. Nevertheless, the two classes of prob-
lems are inherently related and one provides a foundation for the other. Structurally,
a large biological network is an ensemble of smaller components or subnetworks. As
tightly connected subnetworks often correspond to functional units of a biological
network, network partitioning is essential to extract this finer level of detail. On the
other hand, subnetworks together provide a global view of the underlying biological
processes. In particular, gene set based approaches have recently gained attention in
the computational inference of biological networks, for their natural ability to incor-
porate higher-order gene regulatory relationships. As gene expression data often have
a small sample size and excessive noise, such data sets may not capture a complete
picture of complex biomolecular activities. Network reconstruction and partitioning,
two complementary problems in systems biology, together offer a potential avenue
for future researches in gene set based inference of biological networks.

REFERENCES

1. H. Kishino, P.J. Waddell, Correspondence analysis of genes and tissue types and finding
genetic links from microarray data, Genome Inform. 11, 83–95 (2000).

2. J. Schäfer, K. Strimmer, An empirical Bayes approach to inferring large-scale gene asso-
ciation networks, Bioinformatics 21, 754–764 (2005).

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 39

3. J. Schäfer, K. Strimmer, A shrinkage approach to large-scale covariance matrix estima-
tion and implications for functional genomics, Stat. Appl. Genet. Mol. Biol. 4, Article 32
(2005).

4. L. Glass, and S.A. Kauffman, The logical analysis of continuous non-linear biochemical
control networks, J. Theor. Biol. 39, 103–129 (1973).

5. S.A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets,
J. Theor. Biol. 22, 437–467 (1969).

6. H. Lähdesmäki, I. Shmulevich, O. Yli-Harja, On learning gene regulatory networks under
the Boolean network model, Mach. Learn. 147–167 (2003).

7. I. Shmulevich, E.R. Dougherty, S. Kim, W. Zhang, Probabilistic Boolean networks: a
rule-based uncertainty model for gene regulatory networks, Bioinformatics 18(2), 261–
274 (2002).

8. N. Friedman, M. Linial, I. Nachman, D. Peer, Using Bayesian networks to analyze expres-
sion data, J. Comput. Biol. 7, 601–620 (2000).

9. E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, N. Friedman, Module
networks: identifying regulatory modules and their condition-specific regulators from gene
expression data, Nat. Genet. 34, 166–176 (2003).

10. T.S. Gardner, D. di Bernardo, D. Lorenz, J.J. Collins, Inferring genetic networks and
identifying compound mode of action via expression profiling, Science 301(5629), 102–
105 (2003).

11. J. Tegner, M.K.S. Yeung, J. Hasty, J.J. Collins, Reverse engineering gene networks: in-
tegrating genetic perturbations with dynamical modeling, Proc. Natl. Acad. Sci. U.S.A.
100(10), 5944–5949 (2003).

12. A.J. Butte, I.S. Kohane, Mutual information relevance networks: functional genomic clus-
tering using pairwise entropy measurements, Pac. Symp. Biocomput. 5, 415–426 (2000).

13. A.S. Butte, I.S. Kohane, Relevance networks: a first step toward finding genetic regula-
tory networks within microarray data in The Analysis of Gene Expression Data (eds. G.
Parmigiani, E.S. Garett, R.A. Irizarry, S.L. Zeger,), Springer, New York, pp. 428–446,
2003.

14. A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. Dalla Favera, A.
Califano, ARACNE: an algorithm for the reconstruction of gene regulatory networks in a
mammalian cellular context. BMC Bioinform. Suppl 1, S7 (2006).

15. J.J. Faith, B. Hayete, J.T. Thaden, I. Mogno, J. Wierzbowski, G. Cottarel, S. Kasif, J.J.
Collins, T.S. Gardner, Large-scale mapping and validation of Escherichia coli transcrip-
tional regulation from a compendium of expression profiles, PLoS Biol. 5(1), e8 (2007).

16. P.E. Meyer, K. Kontos, F. Lafitte, G. Bontempi, Information-theoretic inference of large
transcriptional regulatory networks, EUROSIP j. Bioinfor. Syst. Biol. 2007 79879, (2007).

17. J. Kubica, A. Moore, D. Cohn, J. Schneider, cGraph: a fast graph based method for link
analysis and queries, Proceedings of IJCAI Text-Mining and Link-Analysis Workshop,
Acapulco, Mexico, 2003.

18. M.G. Rabbat, J.R. Treichler, S.L. Wood, M.G. Larimore, Understanding the topology of
a telephone network via internally sensed network tomography. Proc. IEEE International
Conference on Acoustics, Speech, and Signal Processing, 3, Philadelphia, PA, pp. 977–980,
2005.

19. M.G. Rabbat, M.A.T. Figueiredo, R.D. Nowak, Network inference from co-occurrences,
IEEE Trans. Inform. Theory 54(9), 4053–4068 (2008).

www.it-ebooks.info

http://www.it-ebooks.info/

40 A SURVEY OF COMPUTATIONAL APPROACHES

20. D. Zhu, M.G. Rabbat, A.O. Hero, R. Nowak, M.A.G. Figueirado, De novo reconstructing
signaling pathways from multiple data source, in New Research on Signaling Transduction
(B.R. Yanson, ed.), Nova Publisher, New York, 2007.

21. S. Fortunato, Community detection in graphs, Phys. Rep., 486, 75–174 (2010).

22. M.E.J. Newman, Modularity and community structure in networks. PNAS 103(23), 8577–
8582 (2006).

23. B.W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs, Bell Sys.
Tech. J. 49, 291–307 (1970).

24. U. Luxburg, A tutorial on spectral clustering in Statistics and Computing, 17(4), 395–416
(2007).

25. M. Girvan, M.E.J. Newman, Community structure in social and biological networks, Proc.
Nat. Acad. Sci. U.S.A. 99(12), 7821–7826 (2002).

26. G. Palla, I. Derenyi, I. Farkas, T. Vicsek, Uncovering the overlapping community
structure of complex networks in nature and society, Nature 435(7043), 814–818
(2005).

27. M. Rosvall, C.T. Bergstrom, Maps of random walks on complex networks reveal commu-
nity structure, Proc. Nat. Acad. Sci. 105(4), 1118–1123 (2008).

28. F.Y. Wu, The Potts model, Rev. Mod. Phys. 54(1), 235–268 (1982).

29. F.Y. Wu, Potts model and graph theory, J. Stat. Phys. 52(1), 99–112 (1988).

30. M.E.J. Newman, E. Leicht, Mixture models and exploratory analysis in networks. PNAS,
104(23), 9564–9569 (2007).

31. U.N. Raghavan, R. Albert, S. Kumara, Near linear time algorithm to detect community
structures in large-scale networks, Phys. Rev. E 76(3), 036106 (2007).

32. D. Zhu, A.O. Hero, Z.S. Qin, A. Swaroop, High throughput screening of co-expressed
gene pairs with controlled False Discovery Rate (FDR) and Minimum Acceptable Strength
(MAS), J. Comput. Biol. 12(7), 1027–1043 (2005).

33. M.E.J. Newman, M. Girvan, Finding and evaluating community structure in networks,
Phys. Rev. E 69(2), 026113 (2004).

34. G. Palla, I. Farkas, P. Pollner, I. Derényi, T. Vicsek, Directed network modules, New J.
Phys. 9(6), 186 (2007).

35. M. Rosvall, D. Axelsson, C.T. Bergstrom, The map equation, Eur. Phys. J. Special Top.
178, 13–23 (2009).

36. M. Rosvall, C.T. Bergstrom, Mapping change in large networks, PLoS ONE 5(1), e8694
(2010).

37. D. Marbach, T. Schaffter, C. Mattiussi, D. Floreano, Generating realistic in silico gene
networks for performance assessment of reverse engineering methods, J. Comput. Biol.
16(2), 229–239 (2009).

38. D. Marbach, R.J. Prill, T. Schaffter, C. Mattiussi, D. Floreano, G. Stolovitzky, Revealing
strengths and weaknesses of methods for gene network inference. Proc. Nat. Acad. Sci.
U.S.A. 107(14), 6286–6291 (2010).

39. R.J. Prill, D. Marbach, J. Saez-Rodriguez, P.K. Sorger, L.G. Alexopoulos, X. Xue, N.D.
Clarke, G. Altan-Bonnet, G. Stolovitzky, Towards a rigorous assessment of systems biology
models: the DREAM3 challenges, PLoS ONE 5(2), e9202 (2010).

40. P. Mendes, Framework for comparative assessment of parameter estimation and inference
methods in systems biology, in Learning and Inference in Computational Systems Biology

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 41

(N.D. Lawrence, M. Girolami, M. Rattray, G. Sanguinetti, eds.), MIT Press, Cambridge,
MA, pp. 33–58, 2009.

41. G. Stolovitzky, R.J. Prill, A. Califano, Lessons from the DREAM2 challenges, in Annals
of the New York Academy of Sciences (G. Stolovitzky, P. Kahlem, A. Califano, eds.), vol.
1158, pp. 159–195, 2009.

42. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the
Cell, 4th ed., Garland Publisher 2002.

43. J.-P. Vert, Reconstruction of biological networks by supervised machine learning ap-
proaches, in Elements of Computational Systems Biology (H.M. Lodhi, S.H. Muggleton,
eds.), John Wiley & Sons, Inc., Hoboken, NJ, 2010.

44. H. Pang A. Lin, M. Holford, B.E. Enerson, B. Lu, M.P. Lawton, E. Floyd, H. Zhao, Pathway
analysis using random forests classification and regression, Bioinformatics 22, 2028–2036
(2006).

45. H. Pang, H. Zhao, Building pathway clusters from Random Forests classification using
class votes, BMC Bioinform. 9(87) (2008).

46. A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette,
A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lander, J.P. Mesirov, Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
Proc. Nat. Acad. Sci. U.S.A. 102, 15545–15550 (2005).

47. G. Jr. Dennis, B.T. Sherman, D.A. Hosack, J. Yang, W. Gao, H.C. Lane, R.A. Lempicki,
DAVID: database for annotation, visualization and integrated discovery. Genome Biol.
4(5), P3 (2003).

48. D.W. Huang, B.T. Sherman, R.A. Lempicki, Systematic and integrative analysis of large
gene lists using DAVID Bioinformatics Resources, Nat. Protoc. 4(1), 44–57 (2009).

49. S. Wuchty, E. Ravasz, A. Barabáasi, The architecture of biological networks, in Complex
Systems Science in Biomedicine (E. Micheli-Tzanakou, T. Deisboeck, J. Kresh, eds.),
Springer US, 2006.

50. A. Zhang, Protein Interaction Networks: Computational Analysis, Cambridge University
Press, Cambridge, UK, 2009.

51. K.L. Gunderson, S. Kruglyak, M.S. Graige, F. Garcia, B.G. Kermani, C. Zhao, D. Che,
T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund,
J. Haas, L. Zhou, A. Oliphant, J.B. Fan, S. Barnard, M.S. Chee, Decoding randomly
ordered DNA arrays, Genome Res. 14, 870–877 (2004).

52. D.J. Lockhart, H. Dong, M.C. Byrne, M.T. Follettie, M.V. Gallo, M.S. Chee, M. Mittmann,
C. Wang, M. Kobayashi, H. Horton, E.L. Brown, Expression monitoring by hybridization
to high-density oligonucleotide arrays, Nat. Biotechnol. 14, 1675–1680 (1996).

53. M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Quantitative monitoring of gene expression
patterns with a complementary DNA microarray, Science 270 (5235), 368–371 (1995).

54. J. Shendure, R.D. Mitra, C. Varma, G.M. Church, Advanced sequencing technologies:
methods and goals, Nat. Rev. Genet. 5(5), 335–44 (2004).

55. J. Shendure, H. Ji, Next-generation DNA sequencing, Nat. Biotechnol., 26, 1135–1145
(2008).

56. T. Barrett, D.B. Troup, S.E. Wilhite, P. Ledoux, C. Evangelista, I.F. Kim, M. Tomashevsky,
K.A. Marshall, K.H. Phillippy, P.M. Sherman, R.N. Muertter, M. Holko, O. Ayanbule, A.
Yefanov, A. Soboleva, NCBI GEO: archive for functional genomics data sets: 10 years on,
Nucleic Acids Res. 39, D1005–D1010 (2010) (http://www.ncbi.nlm.nih.gov/geo).

www.it-ebooks.info

http://www.it-ebooks.info/

42 A SURVEY OF COMPUTATIONAL APPROACHES

57. H. Parkinson, U. Sarkans, N. Kolesnikov, N. Abeygunawardena, T. Burdett, M. Dylag,
I. Emam, A. Farne, E. Hastings, E. Holloway, N. Kurbatova, M. Lukk, J. Malone, R. Mani,
E. Pilicheva, G. Rustici, A. Sharma, E. Williams, T. Adamusiak, M. Brandizi, N. Sklyar,
A. Brazma, ArrayExpress update: an archive of microarray and high-throughput
sequencing-based functional genomics experiments. Nucleic Acids Res. 39, D1002–
D1004, (2010) (http://www.ebi.ac.uk/arrayexpress).

58. P.M. Kim, B. Tidor, Subsystem identification through dimensionality reduction of large-
scale gene expression data, Genome Res. 13(7), 1706–1718 (2003).

59. S. Huang, Gene expression profiling, genetic networks and cellular states: an integrating
concept for tumorigenesis and drug discovery, J. Molec. Med. 77, 469–480 (1999).

60. T. Schlitt, A. Brazma, Modelling in molecular biology: describing transcription regulatory
networks at different scales, Philos. Trans. R. Soc. Biol. Sci. 361(1467), 483–494 (2006).

61. D. Heckerman, D. Geiger, M. Chickering, Learning Bayesian networks: The combination
of knowledge and statistical data, Mach. Learn. 20, 197–243 (1995).

62. G.F. Cooper, E. Herskovits, A Bayesian method for the induction of probabilistic networks
from data, Mach. Learn. 9(4), 309–347 (1992).

63. D.M. Chickering, Optimal structure identification with greedy search, J. Mach. Learn.
Res., 3, 507–554 (2002).

64. R.W. Robinson, Counting unlabeled acyclic digraphs, in Combinatorial Mathematics V
(C.H.C. Little ed.), Lecture Notes in Mathematics, 622, pp. 28–43, Springer, Berlin, 1977.

65. K. Murphy, Active learning of causal bayes net structure, Technical Report, UC Berkeley,
2001.

66. K. Murphy, Bayes Net Toolbox v5 for MATLAB, MIT AI Lab, Cambridge, MA, 2003.

67. V. Driessche, J. Demsar, E.O. Booth, P. Hill, P. Juvan, B. Zupan, A. Kuspa, G. Shaulsky,
Epistasis analysis with global transcriptional phenotypes, Nat. Genet. 37(5), 471–477
(2005).

68. D. Zhu, M.L. Dequéant, H. Li, Comparative analysis of distance based clustering
methods, in Analysis of Microarray Data: A Network Based Approach, (F. Emmert-Streib,
M. Dehmer, ed.), Wiley-VCH, Weinheim, Germany, 2007.

69. G. Altay, F. Emmert-Streib, Revealing differences in gene network inference algo-
rithms on the network level by ensemble methods, Bioinformatics 26(14), 1738–1744
(2010).

70. P.E. Meyer, F. Lafitte, G. Bontempi, Minet: an open source R/Bioconductor package for
mutual information based network inference, BMC Bioinform. 9, 461 (2008).

71. F. Emmert-Streib, G. Altay, Local network-based measures to assess the inferability of
different regulatory networks, IET Syst. Biol. 4(4), 277–288 (2010).

72. Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and powerful
approach to multiple testing, J. R. Stat. Soc. Ser. B. 57(1), 289–300 (1995).

73. Y. Benjamini, D. Yekutieli, False discovery rate adjusted multiple confidence intervals for
selected parameters, J. Am. Stat. Assoc. 100, 71–80 (2004).

74. O. Ledoit, M. Wolf, Improved estimation of the covariance matrix of stock returns with
an application to portfolio selection, J. Emp. Finance 10, 603–621 (2003).

75. M. Kanehisa, S. Goto, M. Hattori, K.F. Aoki-Kinoshita, M. Itoh, S. Kawashima,
T. Katayama, M. Araki, M. Hirakawa, From genomics to chemical genomics: new
developments in KEGG, Nucleic Acids Res. 34 (Database issue), D354–D357 (2006).

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 43

76. W.W. Zachary, An information flow model for conflict and fission in small groups, J.
Anthropol. Res. 33, 452–473 (1977).

77. L.C. Freeman, A set of measures of centrality based on betweenness, Sociometry 40,
35–41 (1977).

78. B. Adamcsek, G. Palla, I.J. Farkas, I. Derenyi, T. Vicsek, CFinder: locating cliques and
overlapping modules in biological networks, Bioinformatics 22(8), 1021–1023 (2006).

79. E. Leicht, M.E.J. Newman, Community structure in directed networks, Phys. Rev. Lett.
100(11), 118703 (2008).

80. Y. Kim, S. Son, H. Jeong, Finding communities in directed networks. Phys. Rev. E 81(1),
016103 (2010).

81. P. Dunne, The Complexity of Boolean Networks, Academic Press, CA, 1988.

82. R.J. Tocci, R.S. Widmer, Digital Systems: Principles and Applications, 8 edn., Prentice
Hall, NJ, 2001.

www.it-ebooks.info

http://www.it-ebooks.info/

2
INTRODUCTION TO COMPLEX
NETWORKS: MEASURES,
STATISTICAL PROPERTIES, AND
MODELS

Kazuhiro Takemoto and Chikoo Oosawa

2.1 INTRODUCTION

In real-world systems, several phenomena occur as a result of intricate interac-
tions among several elements. Networks describe the relationships among elements,
and are, thus, simple and powerful tools for describing complicated systems. The
concept of networks is universal and can be applied to a wide range of fields
(mathematics, computer science, economy, sociology, chemistry, biology, etc.). In
recent years, considerable data on interaction has been accumulated using several
new technologies and high-throughput methods. Thus, networks have become quite
important for understanding real-world systems and extracting knowledge of compli-
cated interactions.

In this chapter, we provide an overview of network science. In particular, we discuss
an example of real-world networks and network representation in Section 2.2 and
also mention classical network modes such as random networks and lattice networks,
which are the basis of network analysis. In Section 2.4 and subsequent sections,
we discuss the remarkable statistical properties of networks, and explain network
measures. In addition, well-known network models are mentioned for providing a
clearer understanding of the statistical properties of networks.

Statistical and Machine Learning Approaches for Network Analysis, Edited by Matthias Dehmer and
Subhash C. Basak.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

45

www.it-ebooks.info

http://www.it-ebooks.info/

46 INTRODUCTION TO COMPLEX NETWORKS

TABLE 2.1 Examples of Nodes and Edges in Networks Based on Ref. [4]

Network Nodes Edges

Internet Computer or router Cable or wireless data connection
World Wide Web Web page Hyperlink
Citation relationship Article, patent, or legal case Citation
Power grid Generating station or substation Transmission line
Friendship network Person Friendship
Metabolism Metabolite Metabolic reaction
Food web Species Predation

Several excellent books on network science have already been published (e.g., Refs.
[1–4]). In addition to these books, this chapter aims to facilitate a clearer understanding
of network science.

2.2 REPRESENTATION OF NETWORKS

Networks are represented as sets of nodes and edges drawn between the nodes; thus,
networks are essentially similar to “graphs” in mathematics. Examples of networks
representing real-world systems are listed in Table 2.1.

There are several types of networks (graphs); the major types are shown in
Figure 2.1.

In the simplest case, networks are represented as shown in Figure 2.1a. The re-
lationship (or interaction) between two given nodes is represented in a network by
drawing edges between the nodes. In this case, multiedges, which refer to multiple
edges between the same pair of nodes, and self-edges, in which the source is identical
to the target, are neglected for simplicity. However, the above-mentioned edges are
important in certain networks. For instance, multiedges are necessary if there are dif-
ferent types of interactions between the same pair. Further, self-edges are considered
as self-regulations.

In the above case, we assume that the relationships are symmetric. However, the
direction of a relationship is often observed in real-world systems. In food webs,

1

2
3

4 5

6
7

1

2
3

4 5

6
7

1

2
3

4 5

6
7

3

10
4

2(a) (b) (c)

4 1

2

1

1

FIGURE 2.1 Examples of small networks: a simple network (a), a directed network (b), and
a weighted network (c) in which the numbers along the edges correspond to the weights. The
integers in circles correspond to the labels for nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

CLASSICAL NETWORK 47

for example, lions prey on gazelles but gazelles never eat lions. These asymmetric
interactions are represented as directed networks (see Fig. 2.1b).

In addition to direction, the weight (or strength) of edges is also important in
real-world systems although it is not considered in the above networks. In the World
Wide Web, for example, the weight of hyperlinks for famous sites (e.g., Google and
Yahoo!) may be different from those of personal sites that are visited by only a few
people. Such systems are represented as weighted graphs (see Fig. 2.1c).

As with the networks mentioned above, several types of networks are generally
expressed using the adjacency matrix, where multiedges are considered as weighted
edges (e.g., three edges drawn between a node pair are regarded as an edge with
weight 3). The weights of unweighted edges are considered as 1.

Aij =
{

w (If node i connects to node j with weight w)

0 (Otherwise)
(2.1)

In simple networks (Fig. 2.1a), the edges have similar weights and Aij = Aji and
Aii = 0 are satisfied. The representation of these networks can be well utilized due
to their simplicity.

In this chapter, we consider the same simple network (i.e., Fig. 2.1a), unless spec-
ified otherwise.

2.3 CLASSICAL NETWORK

How are real-world networks constructed? Although it is difficult to answer this
question, we have used ideal models to discuss network structure.

These models are not in complete agreement with real-world networks (see Section
2.4 and subsequent sections for details). However, these models are the basis of
complex networks, and they contribute toward understanding network science in the
future. Next, we briefly discuss some classical network models.

2.3.1 Random Network

In 1960, the Erdös–Rényi model (the so-called “random network model”) was
proposed by two mathematicians, Erdös and Rényi, with the assumption that net-
works are randomly constructed because their identities are averaged when the system
has many elements [5]. This model is considered in several fields such as sociology,
ecology, and mathematical biology because of its simplicity.

In addition, the random network model serves as a foundation for network anal-
ysis. Although random networks conflict with real-world networks (see Section 2.4
and subsequent sections for details), we can evaluate the significance of statistical
properties observed in real-world networks on the basis of the discrepancy between
random networks and real-world ones.

Model networks are generated as follows: supposing N nodes, the edges are drawn
between the nodes with probability p. In the case of simple networks, the expected

www.it-ebooks.info

http://www.it-ebooks.info/

48 INTRODUCTION TO COMPLEX NETWORKS

(a) p = 0 (b) p = 0.1 (c) p = 0.3

FIGURE 2.2 Schematic diagram of Erdös–Rényi networks for p = 0 (a), p = 0.1 (b), and
p = 0.3 (c).

number of edges E is expressed as

E = p

(
N

2

)
= p

N(N − 1)

2
(2.2)

because the total number of possible edges (combinations) is NC2 = N(N − 1)/2.
Figure 2.2 shows a schematic diagram of these model networks. As shown in this
figure, networks change with the probability p.

This probability p, which serves as the model parameter, is estimated as

p = 2E

N(N − 1)
. (2.3)

The number of edges E and the number of nodes N are observable in real-world
networks. Thus, these parameters are used for generating hypothetical networks for
real-world networks.

2.3.2 Lattice Network

Another famous network model involves lattice networks. Examples of networks of
this type are shown in Figure 2.3. These networks are regularly constructed as shown
in this figure; thus, they are different from random networks.

(a) (b)

FIGURE 2.3 Examples of lattice networks. An one-dimensional lattice (a) and a two-
dimensional lattice (b).

www.it-ebooks.info

http://www.it-ebooks.info/

SCALE-FREE NETWORK 49

Lattice networks are relatively unsuitable for hypothetical models in network anal-
ysis because they seem to be artificial. However, they are useful when considering
spatial dimensions such as distance. By assuming the regular networks in mathemat-
ical models, further, it may be easy to derive exact solutions of the models because
of the regularity of lattice networks. Thus, in addition to the random network model,
this model is utilized in various research fields.

2.4 SCALE-FREE NETWORK

Real-world networks possess remarkable statistical properties that are not explained
by random networks and lattice networks. A representative example is the scale-free
properties that relate to the distribution of node degrees.

2.4.1 Degree Distribution

The node degree, the simplest measure of a network, is defined as the number of edges
(neighbors) that a node has. In the case of a simple network consisting of N nodes, in
which Aij = Aji = 1, if an edge is drawn between nodes i and j, the degree of node
i, ki, is expressed as

ki =
N∑

j=1

Aij. (2.4)

A simple question might arise, regarding the way in which degree is distributed
in real-world networks. Barabási and Albert [6] answered this question by defining
degree distribution. This distribution is defined as

P(k) = 1

N

N∑
i=1

δ(ki − k), (2.5)

where δ(x) is the Kronecker’s delta function. This function returns 1 when x = 0 and
returns 0 otherwise. Hence, the term

∑N
i=1 δ(ki − k) corresponds to the number of

nodes with degree k.

2.4.2 Degree Distribution of Random Network

The degree distribution of Erdös–Rényi random networks corresponds to the prob-
ability that a node has k edges. Since an edge is independently drawn between two
given nodes with probability p, we can express the degree distribution as a binomial
distribution:

P rand(k) =
(

N − 1

k

)
pk(1 − p)N−1−k, (2.6)

www.it-ebooks.info

http://www.it-ebooks.info/

50 INTRODUCTION TO COMPLEX NETWORKS

where N is the total number of nodes in the network. In addition, assuming that N

is sufficiently large and λ = p(N − 1) is a constant, this binomial distribution can be
rewritten as a Poisson distribution [7]

P rand(k) � λk

k!
e−λ, (2.7)

which is a bell-shaped curve with a peak at k = λ. In addition to this, it is clear that
lattice networks also represent degree distribution with a peak because each node has
the same degree.

2.4.3 Power–Law Distribution in Real-World Networks

As mentioned above, in random networks, the node degree follows a normal distri-
bution. Contrary to expectations, however, it was found that the degree distributions
P(k) of several real-world networks follow a power–law distribution,

P(k) ∝ k−γ , (2.8)

where γ is a constant, the so-called “degree exponent,” and is empirically found to
be 2 < γ < 3 (see Refs. [2,3,7–9]).

This power–law distribution indicates that a few nodes (hubs) integrate numerous
nodes while most of the remaining nodes do not. Figure 2.4 shows a network with
P(k) ∝ k−3. As shown in this figure, the hubs integrate the nodes with a small degree.

In such networks, the average degree is not representative although it can be calcu-
lated in networks of a finite size. Thus, networks that represent this statistical property
are called “scale-free networks.”

This statistical property is critically different from that of random networks.
The scale-free property (power–law distribution) is often used in the sense of scale

invariance (i.e., self-similarity) because f (Cx) = (Cx)α = Cαf (x) is satisfied, where
C and α are constants, when considering a power–law function f (x) = xα. In fact,
Song et al. [11], using the extended box-counting method, which calculates the fractal
dimension of a self-similar material, showed that real-world scale-free networks have
self-similarity.

However, the relationship between self-similarity and scale-free networks has
sometimes been criticized [12]. For example, we can generate a self-dissimilar net-
work whose degree distribution follows the power–law [13]. Moreover, metabolic
networks, a type of biological network, are suggested to be self-dissimilar because
the degree distributions among different biosynthetic modules are very different [14].
This self-dissimilar property is called “scale-richness,” as opposed to scale-freeness.

For the above reasons, we need to discuss the relationship between power–law
distributions and self-invariance (self-similarity) carefully in the case of complex
networks.

www.it-ebooks.info

http://www.it-ebooks.info/

SCALE-FREE NETWORK 51

FIGURE 2.4 An artificially constructed network with P(k) ∝ k−3 (N = 100). The degrees
of the white nodes are less than 5. The degrees of the gray nodes are greater than 5 but less
than 10. The degree of the black node is greater than 10. This figure is illustrated using the yEd
Graph Editor [10].

2.4.4 Barabási–Albert Model

This model was proposed by Barabási and Albert in 1999 [6] to explain scale-free
networks and is called the “Barabási–Albert (BA) model.”

This model has two mechanisms. One is growth, which refers to the addition of a
new node and its connection to existing nodes. The other is preferential attachment,
which refers to the connection of new nodes to the existing nodes with the probability

�i = ki∑
j kj

. (2.9)

Therefore, the new nodes tend to connect to large-degree nodes, resulting in the
emergence of hubs.

The BA model network is generated by the following procedure.

Step (i) Starting with m0 isolated nodes (Fig. 2.5, t = 0), a new node is connected
to the m0 isolated nodes (Fig. 2.5, t = 1).

Step (ii) Next, a new node is added and is connected to m (≤m0) existing nodes,
which are selected with the probability �i = ki/

∑
j kj (Fig. 2.5, t ≥ 2).

Step (iii) Step (ii) is repeated until the network size reaches the target size N.

In addition, m0 and m are fixed parameters of the algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

52 INTRODUCTION TO COMPLEX NETWORKS

t = 0 t = 1 t = 2 t = 3

FIGURE 2.5 Formation of a Barabási–Albert network in the case of m0 = m = 2. The black
and white nodes correspond to existing and new nodes, respectively.

To obtain the analytical solution of the degree distribution of the BA model, mean-
field based analysis [6,15,16] is used. This is a continuous approximation based on
mean-field approximation, in which the many-body problem is considered as a one-
body problem and which is widely used in the area of statistical mechanics. Using
the mean-field analysis, we can easily obtain analytical solutions.

The analytical solution of degree distribution is derived as follows.
Assuming that the degree of node i, ki, and time t are continuous, the time evolution

of ki is

d

dt
ki = m�i = m

ki∑
j kj

(2.10)

because the degree of node i increases by m with the probability �i. The term
∑

j kj

denotes the sum of the degrees of all nodes. Since m edges are added to the network
at intervals of time t, this sum is directly derived as

∑
j kj = 2mt.

Substituting this term in Equation 2.10, we have d
dt

ki = ki/[2t]. The solution of
this equation with the initial condition ki(t = s) = m is

ki = m

√
t

s
, (2.11)

where s is the time when node i is added to the network; this corresponds to the
number of nodes whose degrees are equal to or more than ki. Therefore, s equals the
number of nodes whose degrees are equal to or more than a given degree k. Since the
total number of nodes is expressed as t, s/t is the cumulative distribution:

P(≥k) = s

t
= m2

k2 . (2.12)

Since d
dk

P(< k) = P(k), the degree distribution is

P(k) = 2m2

k3 , (2.13)

demonstrating that the power–law degree distribution with the fixed degree exponent
3 is independent of the parameter m.

www.it-ebooks.info

http://www.it-ebooks.info/

SMALL-WORLD NETWORK 53

1 1 1 2 2 3

Stub

ki

FIGURE 2.6 Schematic diagram of the configuration model. The dashed lines indicates an
example of connections.

2.4.5 Configuration Model

The BA model represents the power–law degree distribution: P(k) ∝ k−3. However,
this model is partially limited because the degree exponent γ obtained from real-world
networks lies in the range 2 ≤ γ ≤ 3.

When generating networks based on given degree distributions (e.g., P(k) ∝
k−2.2), the configuration model [17] is useful.

The configuration model network is generated by the following procedure (see
also Fig. 2.6).

Step (i) In a set of N initially disconnected nodes, each node i is assigned a number
ki of stubs (nodes with edges unconnected with other nodes), where ki is drawn
from the probability distribution P(k) ∝ k−γ to satisfy m ≤ ki ≤ N1/2 and even∑

i ki.

Step (ii) The network is constructed by randomly selecting stubs and connect-
ing them to form edges by considering the preassigned degrees and avoiding
multiple and self-connections.

Of course, we can use a given degree distribution instead of power–law degree
distributions.

2.5 SMALL-WORLD NETWORK

Interestingly, in networks, the distance between a given node pair is known to be
surprisingly small although the network size is very large. This property is referred
to as the “small-world property” and was originally known as the “six degrees of
separation” in sociology [18]. For example, the small-world property has been exper-
imentally confirmed in the social network formed by the communication via internet
tools such as instant-messaging systems [19].

www.it-ebooks.info

http://www.it-ebooks.info/

54 INTRODUCTION TO COMPLEX NETWORKS

2.5.1 Average Shortest Path Length

The distance between a node pair can be measured using the average shortest path
length of a network, which is defined as

L = 1

N(N − 1)

N∑
i=1

N∑
j=1

d(i, j), (2.14)

where d(i, j) indicates the shortest path length between nodes i and j. In addition,
d(i, i) = 0 and d(i, j) = ∞, if there is no shortest path between nodes i and j. Thus,
the average shortest path length is only calculated in connected networks, in which
there are shortest paths between all node pairs.

The ER random network model helps in explaining a small average shortest path
length [7] when the probability p is not too small. When considering the breadth-first
search from a node on the random network constructed with N nodes and probability
p, the total number of nodes within a distance l is approximately expressed as

l∑
i=0

〈k〉i = 〈k〉l+1 − 1

〈k〉 − 1
≈ 〈k〉l, (2.15)

where 〈k〉 = p(N − 1) and is the average degree of random networks. Equating 〈k〉l
with N, we find that the average shortest path length is proportional to the logarithm
of N:

L ≈ ln N

ln〈k〉 (2.16)

In fact, the average shortest path length is almost similar to that of the random network
model (see Table 2.2 and Refs. 2,7,18 for details).

On the other hand, lattice networks have a large average shortest path length be-
cause they are embedded in dimensional spaces. For example, the one-dimensional
lattice (Fig. 2.3a) and two-dimensional lattice (Fig. 2.3b) display L ∝ N and
L ∝ N1/2, respectively. It is clear that the lattice networks have no small-world
property.

TABLE 2.2 The Number of Nodes, Average Degree 〈k〉, Average Path Length L, and
Clustering Coefficient C of Representative Real-World Networks

Network N 〈k〉 L Lrand C Crand

World Wide Web 153,127 35.21 3.1 3.35 0.1078 0.00023
Power grid 4,941 2.67 18.7 12.4 0.08 0.005
Metabolism 282 7.35 2.9 3.04 0.32 0.026
Food web 154 4.75 3.40 3.23 0.15 0.03

Lrand and Crand are the expected average path length and clustering coefficient estimated from the
random network model, respectively. This table is a modification of Table I in Ref. [7].

www.it-ebooks.info

http://www.it-ebooks.info/

CLUSTERED NETWORK 55

2.5.2 Ultrasmall-World Network

In addition, in the case of scale-free networks, there is a different relationship between
the average shortest path length and network size. It is expected that the average
shortest path length is smaller because of hubs (high-degree nodes). This relationship
is characterized by the degree exponentγ . Whenγ > 3,L ∝ ln N as random networks.
However, when 2 < γ < 3,

L ∝ ln ln N. (2.17)

That is, scale-free networks are more small-world than random networks, indicating
an ultrasmall-world property [20].

In addition, the average shortest path length Lnc of random networks with a given
degree distribution (e.g., the configuration model) [21] is estimated as

Lnc = ln(〈k2〉 − 〈k〉) − 2〈ln k〉 + ln N − γe

ln(〈k2〉/〈k〉 − 1)
+ 1

2
, (2.18)

where 〈. . . 〉 indicates the average over nodes and γe ≈ 0.5772 is the Euler’s constant.
Of course, the above equation can be applied to the ER random network model and
the BA model.

2.6 CLUSTERED NETWORK

2.6.1 Clustering Coefficient

Highly connected subnetworks are embedded in real-world networks by groups and
modules. To measure the clustering effects, the clustering coefficient [18] was pro-
posed. This measure denotes the density among neighbors of node i, and is defined
as the ratio of the number of edges among the neighbors to the number of all possible
connections among the neighbors:

Ci = Mi(
ki

2

) = 2Mi

ki(ki − 1)
, (2.19)

where Mi is the number of edges among the neighbors of node i (see Fig. 2.7).
The overall tendency of clustering is measured by the average clustering coefficient

i i i

Mi = 0
Ci = 0

Mi = 1
Ci = 1/3

Mi = 3
Ci = 1

FIGURE 2.7 The clustering coefficients of node i with degree of 3 (i.e., ki = 3).

www.it-ebooks.info

http://www.it-ebooks.info/

56 INTRODUCTION TO COMPLEX NETWORKS

C = 1
N

∑N
i=1 Ci. A high average clustering coefficient implies that the network is

clustered.
In random networks, since the probability that an edge is drawn between a given

node pair is p, the clustering coefficient is equivalent to the probability p (the model
parameter) Crand = p. Assuming that real-world networks are randomly constructed,
the clustering coefficient is estimated as

Crand = p = 2E

N(N − 1)
≈ 〈k〉

N
, (2.20)

where E and N are the number of edges and nodes, respectively.
However, the clustering coefficients of most real-world networks are higher than

their expected value (see Table 2.2 and Refs. 2,7,18 for details), indicating that the
ER random network is not clustered.

The BA model networks are also not clustered, and their clustering coefficient (see
Refs. 15,16 for derivation) is

CBA = m − 1

8

(ln N)2

N
(2.21)

Since the average degree 〈k〉 is expressed as 2m, the clustering coefficient is rewritten
as

CBA ≈ 〈k〉
N

(ln N)2

16
. (2.22)

This clustering coefficient is a bit higher than that of random networks because of the
presence of hubs. In the BA model, a newly added node is likely to connect to high-
degree nodes selected by the preferential attachment mechanism. When considering
the preferential selection of two nodes, the possibility that two selected nodes are
connected is relatively high because these nodes have many neighbors. If the added
node connects to such a node pair, the number of edges among neighbors increases,
leading to higher clustering coefficients. However, the increase in clustering coeffi-
cient due to this process is very small (i.e., (ln N)2); thus, the clustering coefficient
rapidly decays with increasing N.

In addition, the average clustering coefficient Cnc of random networks with a given
degree distribution (e.g., the configuration model) [17,22] is estimated as

Cnc = (〈k2〉 − 〈k〉)2

〈k〉3N
. (2.23)

The lattice networks are useful for explaining highly clustered networks. For
example, the clustering coefficient of each node is 0.5 (= [2 × 3]/[4 × 3]) in a

www.it-ebooks.info

http://www.it-ebooks.info/

CLUSTERED NETWORK 57

0 1
Rewiring probability

(a) (b) (c)

FIGURE 2.8 Schematic diagram of the Watts–Strogatz model.

one-dimensional lattice (Fig. 2.3a). This model implies that the constraint of space
dimensions contributes to the network clustering observed in real-world networks.

2.6.2 Watts–Strogatz Model

The ER random network model and lattice network model describe the small-world
networks and clustered networks, respectively. However, real-world networks possess
both statistical properties.

To fill the gap between model networks and real-world networks, Watts and Stro-
gatz [18] proposed a simple network model (referred to as the Watts–Strogatz (WS)
model).

The WS model network is constructed as follows: (i) a one-dimensional lattice is
prepared (Fig. 2.8a). (ii) A node and the edge connecting it to its nearest neighbor are
selected in a clockwise sense. (iii) With the probability p, the edges are rewired and
a new target node selected at random. The processes (ii) and (iii) are repeated until
one lap is completed.

The model networks are similar to random networks when p = 1. That is, the
WS model expresses the transition from lattice networks to random networks, and it
includes the random network model and the lattice network models.

Small-world and highly clustered networks emerge when the probability p is in-
between 0 and 1 (e.g., 0.01 < p < 0.1). This is because the rewiring of edges is a
short-cut path in a lattice network. As mentioned above, lattice networks represent a
large average path length; however, the short-cut paths help decrease the average path
length. Since the decay of the clustering coefficient by rewiring is slower than that of
the average path length, the WS model reproduces small-world and highly clustered
networks. However, the node degree follows a normal-like distribution because new
target nodes are randomly selected when rewiring an edge, indicating that the WS
model does not correspond to a scale-free network.

In addition, the analytical solutions of statistical properties such as clustering
coefficient and average shortest path length by changing the rewiring probability p

are described in Refs. [23,24]

www.it-ebooks.info

http://www.it-ebooks.info/

58 INTRODUCTION TO COMPLEX NETWORKS

2.7 HIERARCHICAL MODULARITY

A high clustering coefficient indicates highly interconnected subnetworks (modules)
in real-world networks. However, the next question that arises is regarding the way
in which these modules are organized in the network.

Ravasz et al. [25] and Ravasz and Barabási [26] provided an answer for this
question by using the degree-dependent clustering coefficient.

This statistical property is defined as

C(k) =
∑N

i=1 Ci × δ(ki − k)∑N
i=1 δ(ki − k)

, (2.24)

where Ci is the clustering coefficient of node i (see Eq. 2.19).
Ravasz et al. found that the degree-dependent clustering coefficient follows a

power–law function in several real-world networks:

C(k) ∝ k−α, (2.25)

where α is a constant and is empirically equal to about 1.
In a random network, the clustering coefficients of all nodes are p, which is inde-

pendent of the node degree k, because an edge is drawn between a given node pair
with the probability p: Crand(k) = p. Thus, the random network cannot explain this
statistical property.

This power–law degree-dependent clustering coefficient indicates that the edge
density among neighbors of nodes with a small degree is high and that the edge
density among the neighbors of nodes with a large degree is low. In order to explain
the relation between this property and the network structure, Ravasz et al. used a
simple example, as shown in Figure 2.9.

In Figure 2.9, the modules a, b, and c are integrated by the hub (black node)
belonging to module O. In this case, the degree of node i (ki) is proportional to the
number of modules to which node i belongs (Si). The number of edges among the
neighbors of node i (Mi) also has a linear relationship with Si. Thus, we obtain Mi ∝
ki. Substituting this relation into Equation 2.19, we find the power–law relationship of
degree-dependent clustering coefficients C(k) ∝ k−1. Hence, the power–law degree-
dependent clustering coefficient reflects hierarchical modularity.

2.7.1 Hierarchical Model

As mentioned above, the network model in Figure 2.9 represents hierarchical modu-
larity. Furthermore, by recursively expanding this network as shown in Figure 2.10,
the model network is found to be a scale-free network.

This model network is referred to as the “hierarchical model” [25–27] and is
generated by the following procedure. (i) First, we prepare a d-node module (t = 1
in Fig. 2.10) and place its network in G0. (ii) We generate d − 1 copies of G0. The
peripheral nodes in each copy of G0 connect to the root. At t = 2 (see Fig. 2.10), for

www.it-ebooks.info

http://www.it-ebooks.info/

HIERARCHICAL MODULARITY 59

O

a b

ki

3 1

4 0.83

12 0.18

Ci

c

FIGURE 2.9 Schematic diagram of the hierarchical modularity. Modules are represented by
the triangular-shaded regions. The character near each shaded region corresponds to the name
of the module. The solid lines are the edges within a module, and the dashed lines are the
edges between modules. The white nodes have 3 edges, and their clustering coefficient is 1.
The gray nodes have 4 edges, and their clustering coefficient is 5/6 ≈ 0.83. The black node
has 12 edges, and their clustering coefficient is 2/11 ≈ 0.18.

example, d − 1 nodes (excluding the central node) in each module link to the root.
(iii) The network generated in Step (ii) is placed in G0 (i.e., G0 is updated). The
model network expands by repeating Steps (ii) and (iii).

Here, we show that the degree distribution of hierarchical model follows a power
law.

From the above procedure, the time evolution of the total number of nodes
is dt . When focusing on the root, the time evolution of the node degree is

t=1

t=2

t=3

FIGURE 2.10 Schematic diagram of the hierarchical model with d = 4.

www.it-ebooks.info

http://www.it-ebooks.info/

60 INTRODUCTION TO COMPLEX NETWORKS

∑t
i=1(d − 1)i = (d − 1)[(d − 1)t − 1]/(d − 2). By considering this relationship, we

find that the model network has dj nodes with degree (d − 1)[(d − 1)t−j − 1]/(d − 2)
or more, where j is an integer that lies in the range 0 ≤ j ≤ t. Since ln P(≥ k) =
ln(dj/dt) = (j − t) ln d and ln k ≈ (t − j) ln(d − 1), we directly obtain P(≥ k) =
k− ln d/ ln(d−1). Thus, the degree distribution of the hierarchical model is

P(k) ∝ k−γ , where γ = ln d

ln(d − 1)
+ 1. (2.26)

The hierarchical model network is scale-free and highly clustered. Moreover, it is
also a small-world (i.e., L ∝ ln N) network because of its tree structure (see Ref. [28]
for details).

2.7.2 Dorogovtsev–Mendes–Samukhin Model

The deterministic models such as the hierarchical model are useful because of their
regularity; however, these models also have several limitations. For instance, the
number of nodes cannot be closely controlled and the network is relatively artificial.
In such a case, probabilistic models are more suitable. The Dorogovtsev–Mendes–
Samukhin (DMS) model [29] is a simple probabilistic network model representing
scale-free connectivity, hierarchical modularity, and small-world properties.

This model network is generated as follows: (i) a new node is added, and (ii) it is
connected to both ends of a randomly selected edge. When an edge drawn between
nodes i and j is chosen, for example, the new node k connects to nodes i and j.

This model network becomes scale-free although the preferential attachment
mechanism is not directly considered. This is because the random selection of edges
is essentially similar to the mechanism of preferential attachment.

We here focus on the time evolution of the degree of node i (ki). Since the degree
of node i increases when an edge leading to the node i is selected, the time evolution
is expressed as dki/dt = ki/E, where E is the number of edges and E = 2t. This
equation is essentially similar to the BA model, and the degree distribution of the
DMS model is P(k) ∝ k−3.

Furthermore, the number of edges among the neighbors of node i (Mi) also in-
creases with the degree of node i because one edge leads to node i while the other
edges lead to neighbors of node i. Thus, there exists a linear relationship between Mi

and ki. From this relationship, we obtain the power–law degree-dependent clustering
coefficient, C(k) ∝ k−1, which indicates hierarchical modularity. Moreover, the DMS
mode has a small-world property because it is almost similar to the BA model.

2.8 NETWORK MOTIF

The clustering property and hierarchical modularity indicates the organization of
modules in real-world networks. However, the question is: How do we find such

www.it-ebooks.info

http://www.it-ebooks.info/

ASSORTATIVITY 61

(a) (b)

FIGURE 2.11 Example of network motifs. (a) Feedforward motif. (b) Bi-fan motif.

modules (building blocks) from real-world networks? Milo et al. [30] proposed a
detection method for such modules.

It is expected that the modules and building blocks are not randomly constructed;
thus, such modules are frequently observed to be more than those in random net-
works. For this reason, such subnetworks are referred to as “network motifs” [30,31].
Employing the above difference between real-world networks and random networks,
we may find the modules.

This detection method focuses on the appearance frequencies of a given subnet-
work (i.e., subgraph) in a real network and random networks, that is, Freal and Frand,
respectively. Random networks are generated from the real network by the random-
ization method, in which the terminals of two randomly selected edges are mutually
exchanged at each time step: when the connected node pairs (i, j) and (m, n) are se-
lected, we delete these edges and generate the newly connected pairs (i, n) and (m, j)
(see Ref. [30] for details). We obtain the average 〈Frand〉 and the standard deviation
SD for Frand from many randomized networks generated by the above procedure. The
significance of a subnetwork is evaluated by the Z-score:

Z = Freal − 〈Frand〉
SD

. (2.27)

Thus, network motifs correspond to subnetworks with a larger Z (e.g., Z > 2.0, which
indicates the P-value to be less than 0.05).

Several types of network motifs are found in real-world networks represented
as directed networks by employing this detection method. For example, the gene
regulatory networks and the neural network of nematodes possess the feedforward
motif and bi-fan motif [30] (Fig. 2.11). The feedforward motif, in particular, plays an
important role in gene regulatory networks [31,32].

2.9 ASSORTATIVITY

The relationship between the degrees in a connected node pair is very interesting. Since
real-world networks are nonrandom, we can expect this relationship to be significant.
However, degree distribution only involves the degree of each node. Thus, we need
an alternative measure for characterizing such a relationship of degrees.

www.it-ebooks.info

http://www.it-ebooks.info/

62 INTRODUCTION TO COMPLEX NETWORKS

2.9.1 Assortative Coefficient

To characterize the relationship between node degrees, Newman proposed the assor-
tative coefficient [33], defined as

r = 4〈kikj〉 − 〈ki + kj〉2

2〈k2
i + k2

j 〉 − 〈ki + kj〉2
, (2.28)

where ki and kj are the degrees of two nodes at the ends of an edge, and 〈· · · 〉 denotes
the average over all edges. This is simply the Pearson correlation coefficient of degrees
between a connected node pair, and it lies in the range −1 ≤ r ≤ 1.

The relationship between the assortative coefficient and network structures is de-
scribed as follows:

(i) In the case of r > 0, the network shows “assortativity,” in which high-degree
nodes tend to connect to high-degree nodes (see Fig. 2.12a).

(ii) In the case of r = 0, there is no correlation between the degrees in a connected
node pair (see Fig. 2.12b). That is, such networks are randomly constructed,
and the expected degree of neighbors of each node is constant.

0

1

4

5

6

7
8

10

11

14

17

18

19

23

24

27

33

34 38

42

44

45

46
52

55

56

57

62

65

68

71

82

93

96

2
80

3

43

20

25

78

67

26

9

47

41

12

13

49

15
28

16

59

73

21

37

22

94

86

72

81

29

91

30

31

32

64

58

35

48

36

95

39

79

40

70

50

90

51

99

53
74

54

66

60
9861

77

63

89

69

83

75

97

76

92

84

87

85

88

(a) (b)

(c)

FIGURE 2.12 Schematic diagram of an assortative network (a), a random network (b), and
a disassortative network (c). The networks consist of 100 nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

ASSORTATIVITY 63

(iii) In the case of r < 0, the network shows “disassortativity,” in which low-degree
nodes tend to connect to high-degree nodes (see Fig. 2.12c).

It is generally known that social and technological networks exhibit assortativity
and that biological and ecological networks exhibit disassortativity [33].

2.9.2 Degree Correlation

Assortativity relates to the degree correlation. The degree correlation characterizes
the expected degree of the neighbors of a node with degree k and is defined as

k̄nn(k) =
∑N

i=1 �i × δ(ki − k)∑N
i=1 δ(ki − k)

, (2.29)

where �i denotes the average nearest-neighbor degree, expressed as

�i = 1

ki

∑
h∈V (i)

kh, (2.30)

where V (i) corresponds to the set of neighbors of node i.
That is, the positive and negative degree correlation indicates assortativity and

disassortativity, respectively.
In many real-world networks, it is empirically known that degree correlation fol-

lows a power–law function:

k̄nn(k) ∝ kν, (2.31)

where ν is a constant, and it also characterizes the assortativity.
The exponent ν takes values −1 < ν < −0.5 in technological networks such as

Internet and the World Wide Web [34,35] and biological networks such as protein–
protein interaction networks [35,36] and gene regulatory networks [37]. On the
other hand, a positive ν value is observed in social networks such as coauthor
networks [35].

Assortativity and disassortativity is never observed in random networks. The de-
gree correlation, Equation 2.29, is also expressed as

k̄nn(k) =
∑
k′

k′P(k′|k), (2.32)

where P(k′|k) is the conditional probability that the edge belonging to a node with
degree k points to a node with degree k′ [38]. Since networks are randomly constructed,
the conditional probability P(k′|k) is k′ × Nk′/[2E], where Nk′ is the number of nodes
with degree k′ and is equivalent to N × P(k′). E denotes the number of edges. Thus,
we obtain

k̄nn(k) =
∑
k′

(k′)2P(k′)
〈k〉 = 〈k2〉

〈k〉 , (2.33)

www.it-ebooks.info

http://www.it-ebooks.info/

64 INTRODUCTION TO COMPLEX NETWORKS

indicating that the degree correlation is independent from the node degree k (i.e.,
the network shows no assortativity). Since the random network models (i.e., the ER
model and the BA model) are randomly constructed, such networks also show no
assortativity although the degree distributions are different between these models.

2.9.3 Linear Preferential Attachment Model

To generate assortative and disassortative networks, the linear preferential attachment
(LPA) model [39] is useful. This is an extended BA model, and the preferential
attachment mechanism is modified as

�LPA
i = ki + a∑

j(kj + a)
, (2.34)

where a is a constant and
∑

j(kj + a) = (2m + a)t. This model is equivalent to the BA

model when a = 0. When a → ∞, the probability �LPA corresponds to the random
attachment mechanism in which nodes are selected with the probability 1/N(t), where
N(t) is the total number of nodes at time t. High-degree nodes are more frequently
chosen when a < 0. Since networks grow when a is larger than −m, which is the
initial degree of a newly added node, the constant a lies in the range −m < a < ∞.

The degree distribution is obtained from the time evolution of the node degree,
which is expressed as dki/dt = m�LPA

i . Solving this equation, we have

ki = (m + a)
(t

s

) m
2m+a − a (2.35)

where s is the time at which node i is added. Therefore, the degree distribution in the
LPA model follows the power law (scale-free property):

P(k) ∝ (k + a)−γ , where γ = 3 + a

m
. (2.36)

This model has a tunable degree exponent that depends on a and m, although the
degree exponent of the BA model is fixed, that is, γ = 3.

The LPA model generates assortative and disassortative networks with positive a

and negative a(> −m), respectively.
To show this, we need to consider the time evolution of Ri = ∑

h∈V (i) kh. In this
model, there are two conditions for the increase of Ri, as follows:

(i) Node i is selected with the probability m�LPA
i .

(ii) The neighbors of node i are selected with the probability m�LPA
i .

In the case of (i), Ri increases by m. In the case of (ii), Ri increases by 1. Thus, the
time evolution of Ri is

d

dt
Ri = m × m�LPA

i +
∑

h∈V(i)

m�LPA
h (2.37)

www.it-ebooks.info

http://www.it-ebooks.info/

ASSORTATIVITY 65

The first and final terms of the above equation correspond to the increments in con-
ditions (i) and (ii), respectively.

Substituting the solution of the above equation in Equation 2.30, the degree cor-
relation is obtained (see Ref. 15 for derivation).The degree correlations are different
with respect to the constant a as follows:

k̄nn(k) ∝

⎧⎪⎨
⎪⎩

ln k (a > 0)

Const. (a = 0)

ka/m (−m < a < 0).
(2.38)

As shown in Equation 2.38, the LPA model generates assortative, random, and
disassortative networks depending on the parameter a. In addition, for −m < a < 0,
it is found that the exponent of the power–law degree correlation (ν) relates to the
degree exponent (γ), that is, ν = 3 − γ .

2.9.4 Edge Rewiring Method

The rewiring based on node degrees [40] is also employed when generating assortative
and disassortative networks.

The procedure is as follows. (i) Generate random networks with a given degree
distribution by network models (e.g., the configuration model introduced in Section
2.4.5). (ii) Two edges are randomly selected, and the four nodes are ranked in order
of their degrees (Fig. 2.13a). (iii) When generating assortative networks, the highest
degree node is connected to the next highest degree nodes (Fig. 2.13b). In contrast,

1

2

3

4

1

2

3

4

1

2

3

4

(a)

(b)

(c)

FIGURE 2.13 Schematic diagram of rewiring based on node degrees. The integer corre-
sponds to a rank order based on node degrees. (a) Two randomly selected edges. (b) Rewiring
for assortative networks. (c) Rewiring for disassortative networks.

www.it-ebooks.info

http://www.it-ebooks.info/

66 INTRODUCTION TO COMPLEX NETWORKS

for disassortative networks, the highest degree node is connected to the lowest degree
node (Fig. 2.13c). In both cases, the other edge is drawn between the two remaining
nodes.

Steps (ii) and (iii) are repeated until the rewiring of all edges is completed.

2.10 RECIPROCITY

The direction of edges is a very interesting parameter because it critically influences
system dynamics, although we did not consider it in the previous sections for the sake
of simplicity. In particular, the link reciprocity is an important measure for character-
izing the significance of symmetric relationships (i.e., mutual edges) in networks.

Conventionally, link reciprocity is expressed as the ratio (e.g., [41])

rd = E↔
d

Ed

, (2.39)

where E↔
d and Ed correspond to the number of mutual edges and the total number of

directed edges, respectively. It is clear that perfectly bidirectional and unidirectional
networks show rd = 1 and rd = 0, respectively.

However, in order to evaluate the significance of mutual edges, the reciprocity rd
should be compared to the expected reciprocity rrand

d estimated from random networks
with the same number of nodes and edges. For instance, the frequent emergence of
mutual edges is common in networks with the large number of edges.

To avoid this problem, Garlaschelli and Loffredo [42] proposed a novel definition
of link reciprocity as the correlation coefficient between the entries of the adjacency
matrix of a directed network:

ρ =
∑

i /= j(Aij − Ā)(Aji − Ā)∑
i /= j(Aij − Ā)

, (2.40)

where the average value Ā = ∑
i /= j Aij/[N(N − 1)] = Ed/[N(N − 1)] is the ratio

of observed directed edges to possible directed connections (i.e., edge density).
Since

∑
i /= j AijAji = E↔

d and
∑

i /= j A2
ij = ∑

i /= j Aij = L, the above equation
is rewritten as

ρ = E↔
d /Ed − Ā

1 − Ā
= rd − Ā

1 − Ā
. (2.41)

This equation indicates that the novel definition of link reciprocity is an extended
version of the conventional definition of link reciprocity rd .

For ρ > 0, the network represents link reciprocity. Mutual edges are significantly
observed, indicating symmetric relationship. This property is prominently found in
the world trade web (i.e., international import–export networks). This result is in
agreement with the empirical knowledge that import–export relationships tend to be
symmetric because international problems occur due to asymmetric relationships.

www.it-ebooks.info

http://www.it-ebooks.info/

WEIGHTED NETWORKS 67

On the other hand, for ρ < 0, the unidirectional edges are dominant, suggesting an
asymmetric relationship. Food webs, in particular, exhibit antireciprocity. This result
is also consistent with our assumption. There are several examples of asymmetric
relationships in food webs (e.g., wolves prey on rabbits, but rabbits never eat wolves).

2.11 WEIGHTED NETWORKS

The weight (or strength) of edges is also an important factor in complex networks.
Here, we introduce statistical measures and statistical relationships in weighted net-
works without the direction of edges.

For a convenient explanation, we divide the adjacency matrix defined in Equation
2.1 into two matrices, bij and wij . The matrix bij corresponds to an adjacency matrix
in which bij = 1 if there is an edge between nodes i and j, and bij = 0 otherwise. The
weight of the edge drawn between nodes i and j is stored inwij . That is, the relationship
between the original adjacency matrix Aij and these matrices is Aij = bijwij .

2.11.1 Strength

We first focus on two simple measures: the degree of node i, ki = ∑N
i=1 bij and the

“strength” of node i [43,44], defined as

si =
N∑

i=1

bijwij. (2.42)

In real-world weighted networks, we observe the power–law relationship between the
degree k and the average strength over nodes with degree k:

s(k) ∝ kβ (2.43)

Assuming no correlation between the weight of edges and the node degree, the weight
wij is considered as the average weight 〈w〉 = ∑

ij aijwij/[2E], where E denotes
the total number of edges. In this case, therefore, there is a linear relationship (i.e.,
si = 〈w〉ki), indicating β = 1.

However, the exponent β is larger than 1 in real-world weighted networks. This
result is nontrivial as it indicates that the weight of edges leading to high-degree nodes
(hubs) is high.

Furthermore, it was found that the average weight 〈wij〉 can be expressed as a
function of the end-point degrees:

〈wij〉 ∝ (kikj)θ (2.44)

Since si ∝ 〈wij〉ki ∝ k1+θ
i kθ

j , we obtain β = 1 + θ.

www.it-ebooks.info

http://www.it-ebooks.info/

68 INTRODUCTION TO COMPLEX NETWORKS

2.11.2 Weighted Clustering Coefficient

The concepts of weight and strength can be applied to the classical clustering coeffi-
cient (see also Section 2.6.1). The weighted clustering coefficient [43,44] is defined
as

Cw
i = 1

si(ki − 1)

∑
j,h

wij + wih

2
bijbihbjh. (2.45)

In accordance with the classical clustering coefficient, the average weighted clustering
coefficient Cw and the degree-dependent weighted clustering coefficient Cw(k) are
defined.

In the case where there is no correlation between weights and topology (i.e., ran-
domized networks), Cw = C and Cw(k) = C(k). However, we may observe two oppo-
site cases. If Cw > C, the edges with larger weights tend to form highly interconnected
subnetworks such as modules. On the other hand, if Cw < C, such modules are likely
to be formed by the edges with lower weights. Similarly, the above explanation is
applicable to Cw(k) for evaluating the average weighted clustering coefficient over
nodes with degree k.

In real-world weighted networks [43] (e.g., international airport networks, in which
nodes and weighted edges correspond to airports and flights with traffics, respec-
tively), Cw > C was observed. Furthermore, a higher weighted clustering coefficient
is significant for hub nodes, that is, Cw(k) > C(k) for large k. This result indicates that
edges with high weights (e.g., flights with higher traffics) are densely drawn among
hub nodes (e.g., airports). The scientific collaboration networks (in which the nodes
and weighted edges are author and coauthor relationships, respectively, considering
the number of papers) represent the same tendency.

2.11.3 Weighted Degree Correlation

Similarly, we can also consider the weighted version of degree correlation. This
weighted degree correlation is obtained by modifying the original average nearest-
neighbor degree �i (see also Section 2.9.2). The weighted average nearest-neighbor
degree [43,44] is defined as

�w
i = 1

si

N∑
j=1

bijwijkj. (2.46)

This definition implies that �w
i > �i if the edges with larger weights are connected

to the neighbors with larger degrees and that �w
i < �i in the opposite case.

Substituting the above equation in Equation 2.29, in which �w
i is referred to as �i,

we obtain the weighted degree correlation k̄w
nn(k). The interpretation for magnitude

relations between k̄w
nn(k) and k̄nn(k) is similar to that between �w

i and �i.
In real-world weighted networks [43] (airport networks and scientific collaboration

networks), k̄w
nn(k) > k̄nn(k) was observed for large k, suggesting that the edges with

larger weights lead to high-degree nodes (hub nodes).

www.it-ebooks.info

http://www.it-ebooks.info/

CENTRALITY 69

2.12 NETWORK COMPLEXITY

Real-world networks are complex and rich in variety, as explained above; a measure
of the structural complexity of networks (network complexity) is therefore necessary.

The “graph entropy” is often used to evaluate network complexity (reviewed in
Refs. [45,46]). The graph entropy of network G is based on Shannon’s entropy, and
it is conceptually defined as

Ī(G) = −
n∑

i=1

|Xi|
|X| log

|Xi|
|X| , (2.47)

where |X| corresponds to a network invariant such as the total number of nodes or
the total number of edges. The network is divided into n subsets, based on a given
criterion, and the value |Xi| denotes the cardinality of subset i. A larger Ī(G) indicates
a higher network-variation.

Here, as a simple example, we consider the graph entropy based on the node degree
[47]. Let Nk be the number of nodes with degree k; the graph entropy Īdeg(G) is given
as

Īdeg(G) = −
N−1∑
k=0

Nk

N
log

Nk

N
. (2.48)

Since Nk/N = P(k) (i.e., the degree distribution), this equation is rewritten as
Īdeg(G) = − ∑N−1

i=0 P(k) log P(k). That is, the graph entropy Īdeg(G) characterizes
the degree of heterogeneity in a network. For example, random (homogeneous) net-
works and scale-free (heterogeneous) networks have a high Īdeg(G) and a low Īdeg(G),
respectively.

Furthermore, we can define several graph entropies, based on different criteria,
and these graph entropies are applied in a wide range of research fields (see Ref. [45]
for details).

2.13 CENTRALITY

In the previous sections, we explained the global features of complex networks, such as
the degree distribution and average shortest path length. However, it is also important
to characterize local properties (i.e., the characteristics of each node in a complex
network). For example, the clustering coefficient indicates the degree of clustering
among the neighbors of a node, as explained in Section 2.6.1. In addition to the
clustering coefficient, centrality is an important concept in network analysis because
it helps in finding central (important) nodes in complex networks.

www.it-ebooks.info

http://www.it-ebooks.info/

70 INTRODUCTION TO COMPLEX NETWORKS

2.13.1 Definition

To date, several node centralities have been proposed, based on topological informa-
tion. Well-used centralities are as follows.

Degree Centrality The degree centrality [48] is the simplest centrality measure.
Assuming a correlation between the centrality (or importance) of node i and the
degree of node i (ki), the degree centrality of node i is defined as

CD(i) = ki

N − 1
, (2.49)

where N is the network size (i.e., the total number of nodes). Since this centrality is
essentially similar to the node degree, this is widely used in network analysis.

Closeness Centrality The closeness centrality [48] is based on the shortest path
length between nodes i and j, d(i, j). When the average path length between a node
and the other nodes is relatively short, the centrality of such a node may be high. On
the basis of this interpretation, the centrality of node i is expressed as

CC(i) = N − 1∑N
j=1,j /= i dij

. (2.50)

However, we cannot appropriately calculate the closeness centrality when there are
isolated components resulting from unreachable node pairs. We need to assume a
connected network to obtain the closeness centrality.

Betweenness Centrality As in the case of closeness centrality, the betweenness cen-
trality [48] is based on the shortest path between nodes. However, the interpretation
of centrality is a little different in these two cases.

The betweenness centrality focuses on the number of visits through the shortest
paths. If a walker moves from one node to another node via the shortest path, then
the nodes with a large number of visits by the walker may have high centrality. The
betweenness centrality of node i is defined as

CB(i) =
∑

s /= t /= i

σst(i)

σst

, (2.51)

where σst(i) and σst are, respectively, the number of shortest paths between nodes s

and t, on which node i is located, and the number of shortest paths between nodes s and
t. For normalization, the betweenness centrality is finally divided by the maximum
value.

The calculation of betweenness centrality assumes a connected component, as in
closeness centrality, because the betweenness centrality is also based on the shortest
paths.

www.it-ebooks.info

http://www.it-ebooks.info/

CENTRALITY 71

Eigenvector Centrality The eigenvector centrality is a higher version of degree cen-
trality. The degree centrality is only based on the number of neighbors. However,
the eigenvector centrality can consider the centralities of neighbors. Let CE(i) be the
centrality of node i; CE(i) is proportional to the average of the centralities of the
neighbors of node i,

CE(i) = λ−1
N∑

j=1

Mij · CE(j), (2.52)

where Mij is an adjacency matrix. Mij = 1 if node i connects to node j, and Mij = 0
otherwise. λ is a constant. Suppose that x = (CE(1), . . . , CE(N)); this equation is
rewritten as λx = M · x. The eigenvector centrality is defined as the eigenvector with
the largest eigenvalue [49].

2.13.2 Comparison of Centrality Measures

As mentioned in the previous section, the interpretation of centrality is different in
these different centrality measures. To explain the differences between the centrality
measures, we show an application example (Fig. 2.14).

0.25

0.50

0.25

0.25

0.13

0.13

0.13

0.13

0.50

0.57

0.53

0.36

0.36

0.36

0.53

0.36

0.38

0.38

0.62

1.00

0.69

0.69

0.41

0.21

0.21

0.21

17

16

18

0

0

0

0

0

0

(a) Degree centrality (b) Closeness centrality

(c) Betweenness centrality (d) Eigenvector centrality

a

b

c

d

e

f

g

h

i

FIGURE 2.14 Comparison of centrality measures. The numerical values and lowercase let-
ters located near nodes indicate centrality values and node identifiers, respectively. The size of
a node is based on its centrality value normalized by the maximum centrality value.

www.it-ebooks.info

http://www.it-ebooks.info/

72 INTRODUCTION TO COMPLEX NETWORKS

Since the degree centrality is based on the node degree, high-degree nodes (e.g.,
nodes b and f) show high centrality. By contrast, however, node a also has high
centrality in the case of both closeness centrality and betweeness centrality, although
its degree is low (ka = 2). Node a plays the role of an intersection between two
subnetworks whose node sets are {b, c, d, e} and {f, g, h, i}, respectively. Thus, node
a may be interpreted as a central node with respect to the role of intersection. These
centrality measures can find an important node because they are based on the shortest
path analysis.

The results for eigenvector centrality are similar to those for degree centrality
because eigenvector centrality is an extended degree centrality. In general, however,
we observe high eigenvector centrality for nodes belonging to a dense subgraph (i.e.,
cliques) because the eigenvector centrality is determined by the centralities of its
neighbors in addition to its own centrality. As shown in Figure 2.14d, the nodes
belonging to the triangle consisting of nodes f , h, and i show high centralities.

In this manner, these centrality measures provide different interpretations of node
centrality. In the light of these difference, we need to use centrality measures carefully.

2.14 CONCLUSION

In this chapter, we introduced several statistical properties of real-world networks,
such as the scale-free property and small-world property, by comparing these networks
to random networks. That is, the random network models (e.g., the ER model and
configuration model) are powerful null models for network analysis. For example, we
can find the network motif by comparing between real-world networks and random
(null model) networks as explained in Section 2.8. Furthermore, network measures are
not overestimated or underestimated by considering random network models because
the models detect the bias against structural complexity.

The nonrandom structural patterns (especially scale-free property) are known to
critically influence the dynamics of networks, such as epidemic spreading (e.g., [50])
and synchronization (e.g., [51]), implying the importance of network structure. More-
over, we discussed several network models and the reproduction of their structural
properties. Since these models can control the tendency of structural patterns using
a few parameters, they are useful to investigate the relationship between structural
patterns and dynamics on networks.

The structural patterns and statistical laws help in the modeling of complex systems.
For example, we may discuss the significance of unknown parameters, and simplify
model representations. Furthermore, we find that network models can be used to
predict missing information. The understanding of real-world networks is still not
complete. For example, there may be many unknown relationships (i.e., links) in
systems. Thus, the finding of missing information is the prime challenge in network
science. The network models serve as a foundation for the prediction of such missing
information, that is, “link prediction” [52].

The statistical properties and network models play important roles not only in
network science but also in a wide range of research fields.

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 73

REFERENCES

1. D.J. Watts, Small Worlds: The Dynamics of Networks Between Order and Randomness,
Princeton University Press, New Jersey, 1999.

2. S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Nets to the
Internet and WWW, Oxford University Press, Oxford, 2003.

3. R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A Statistical
Physics Approach, Cambridge University Press, Cambridge, 2004.

4. M.E.J. Newman, Networks: An Introduction, Oxford University Press, Oxford, 2010.

5. B. Bollobas, Random Graphs, Academic Press, London, 1985.

6. A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Science 286, 509
(1999).

7. R. Albert, A.-L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys. 74,
47 (2002).

8. A.-L. Barabási, Z.N. Oltvai, Network biology: understanding the cell’s functional organi-
zation, Nat. Rev. Genet. 5, 101 (2004).

9. R. Albert, Scale-free networks in cell biology, J. Cell Sci. 118, 4947 (2005).

10. http://www.yworks.com/products/yed/

11. C. Song, S. Havlin, H.A. Makse, Self-similarity of complex networks, Nature 433, 392
(2005).

12. M. Arita, Scale-freeness and biological networks, J. Biochem. 138, 1 (2005).

13. L. Li, D. Alderson, J.C. Doyle, W. Willinger, Towards a theory of scale-free graphs:
definition, properties, and implications, Inter. Math. 2, 431 (2005).

14. R. Tanaka, Scale-rich metabolic networks, Phys. Rev. Lett. 94, 168101 (2005).

15. G. Szabó, M. Alava, J. Kertész, Structural transitions in scale-free networks, Phys. Rev. E
67, 056102 (2003).

16. A. Barrat, R. Pastor-Satorras, Rate equation approach for correlations in growing network
models, Phys. Rev. E 71, 036127 (2005).

17. M. Catanzaro, M. Boguñá, R. Pastor-Satorras, Generation of uncorrelated random scale-
free networks, Phys. Rev. E 71, 027103 (2005).

18. D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature 393, 440
(1998).

19. J. Leskovec, E. Horvitz, Planetary-scale views on a large instant-messaging network, Pro-
ceeding of the 17th International Conference on World Wide Web, p. 915, 2008.

20. R. Cohen, S. Havlin, Scale-free networks are ultrasmall, Phys. Rev. Lett. 90, 058701 (2003).

21. A. Fronczak, P. Fronczak, J.A. Hoĺyst, Average path length in random networks, Phys.
Rev. E 70, 056110 (2004).

22. S.N. Dorogovtsev, Clustering of correlated networks, Phys. Rev. E 69, 027104 (2004).

23. M.E.J. Newman, C. Moore, D.J. Watts, Mean-field solution of the small-world network
model, Phys. Rev. Lett. 84, 3201 (2000).

24. A. Barrat, M. Weigt, On the properties of small-world network models, Eur. Phys. J. B 13,
547 (2000).

25. E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.-L. Barabási, Hierarchical organi-
zation of modularity in metabolic networks, Science 297, 1551 (2002).

www.it-ebooks.info

http://www.it-ebooks.info/

74 INTRODUCTION TO COMPLEX NETWORKS

26. E. Ravasz, A.-L. Barabási, Hierarchical organization in complex networks, Phys. Rev. E
67, 026112 (2003).

27. A.-L. Barabási, E. Ravasza, T. Vicsek, Deterministic scale-free networks, Physica A 299,
559 (2001).

28. Z. Zhang, Y. Lin, S. Gao, S. Zhou, J. Guan, Average distance in a hierarchical scale-free
network: an exact solution, J. Stat. Mech. 2009, P10022 (2009).

29. S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Size-dependent degree distribution of
a scale-free growing network, Phys. Rev. E 63, 062101 (2001).

30. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Network motifs:
simple building blocks of complex networks, Science 298, 824 (2002).

31. U. Alon, Network motifs: theory and experimental approaches, Nat. Genet. Rev. 8, 450
(2007).

32. S. Mangan, U. Alon, Structure and function of the feed-forward loop network motif, Proc.
Natl. Acad. Sci. U.S.A. 100, 11980 (2003).

33. M.E.J. Newman, Assortative mixing in networks, Phys. Rev. Lett. 89, 208701 (2002).

34. R. Pastor-Satorras, A. Vázquez, A. Vespignani, Dynamical and correlation properties of
the internet, Phys. Rev. Lett. 87, 258701 (2001).

35. A. Vázquez, Growing network with local rules: preferential attachment, clustering hierar-
chy, and degree correlations, Phys. Rev. E 67, 056104 (2003).

36. V. Colizza, A. Flammini, A. Maritan, A. Vespignani, Characterization and modeling of
protein–protein interaction networks, Physica A 352, 1 (2005).

37. K. Takemoto, C. Oosawa, Modeling for evolving biological networks with scale-free con-
nectivity, hierarchical modularity, and disassortativity, Math. Biosci. 208, 454 (2007).

38. V.M. Eguíluz, K. Klemm, Epidemic threshold in structured scale-free networks, Phys. Rev.
Lett. 89, 108701 (2002).

39. S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Structure of growing networks with
preferential linking, Phys. Rev. Lett. 85, 4633 (2000).

40. A. Trusina, S. Maslov, P. Minnhagen, K. Sneppen, Hierarchy measures in complex net-
works, Phys. Rev. Lett. 92, 178702 (2004).

41. M.Á. Serrano, M. Boguñá, Topology of the world trade web, Phys. Rev. E 68, 015101(R)
(2003).

42. D. Garlaschelli, M.I. Loffredo, Patterns of link reciprocity in directed networks, Phys. Rev.
Lett. 93, 268701 (2004).

43. A. Barrat, M. Barthélemy, R. Pastor-Satorras, A. Vespignani, The architecture of complex
weighted networks, Proc. Natl. Acad. Sci. U.S.A. 101, 3747 (2004).

44. A. Barrat, M. Barthélemy, A. Vespignani, Modeling the evolution of weighted networks,
Phys. Rev. E 70, 066149 (2004).

45. M. Dehmer, A. Mowshowitz, A history of graph entropy measures, Inform. Sci. 181, 57
(2011).

46. G. Simonyi, Graph entropy: a survey, in Combinatorial Optimization (W. Cook, L. Lovász,
P. Seymour, eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 20, p. 399, 1995.

47. N. Rashevsky, Life information theory and topology, Bull. Math. Biophys. 17, 299 (1955).

48. L.C. Freeman, Centrality in social networks: conceptual clarification, Soc. Netw. 1, 215
(1979).

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 75

49. P. Bonacich, Some unique properties of eigenvector centrality, Soc. Netw. 29, 555 (2007).

50. R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev.
Lett. 86, 3200 (2001).

51. Y. Moreno, A.F. Pacheco, Synchronization of Kuramoto oscillators in scale-free networks,
Euro. Phys. Lett. 68, 603 (2004).

52. L. Lu, T. Zhou, Link prediction in complex networks: a survey, arXiv/1010.0725 (2010).

www.it-ebooks.info

http://www.it-ebooks.info/

3
MODELING FOR EVOLVING
BIOLOGICAL NETWORKS

Kazuhiro Takemoto and Chikoo Oosawa

3.1 INTRODUCTION

The biomolecules of the living organisms, such as proteins and metabolites, undergo
several interactions and chemical reactions, which lead to the occurrence of various
life phenomena [1–6]. These interactions can be represented in the form of networks
(graphs) (see Fig. 3.1, for example), the so-called “biological networks”; the evo-
lution of these biological networks is a long-standing question. It is believed that
biological networks adaptively shape-shift with the changing environment (e.g., tem-
perature, pressure, and radial ray), and consequently, living organisms can perform
new functions. Thus, for understanding life phenomena, it is important to obtain an
understanding of network structures and their formation mechanisms from a macro-
scopic viewpoint. In addition to this, such a network approach also plays a significant
role in technological processes such as finding missing interactions and designing
novel interactions.

With recent developments in biotechnology and bioinformatics, the understanding
of the interactions among biomolecules is progressively becoming clearer. The data
of the interactions are accumulated in several databases. For example, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [7] is a famous database in which
metabolic pathways of many living organisms are available. Moreover, we can obtain
the large-scale data for protein–protein interactions from the Database of Interacting
Proteins (DIP) [9]. Hence, we can now observe large-scale biological networks using
several databases.

Statistical and Machine Learning Approaches for Network Analysis, Edited by Matthias Dehmer and
Subhash C. Basak.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

77

www.it-ebooks.info

http://www.it-ebooks.info/

78 MODELING FOR EVOLVING BIOLOGICAL NETWORKS

FIGURE 3.1 The partial metabolic network of Escherichia coli obtained from the KEGG
database [7]. The nodes (filled circles) and edges (links) represent the metabolites and substrate–
product relationships. This network was drawn using the yEd Graph Editor [8].

In recent years, the analyses of large-scale biological networks constructed from
several databases are actively being conducted using graph-theoretical metrics. As a
result, universal structural properties such as heterogeneous connectivity have been
found in several types of biological networks in several organisms (e.g., reviews
in Refs. [1,2,10]). This finding implies that biological networks grow according to
universal design principles. However, the growth of biological networks cannot be
directly observed because the databases only provide static networks. Therefore, theo-
retical approaches that employ models are useful for revealing formation mechanisms
(rules) of biological networks.

Since the conception of the problem, the evolution of networks has been theoret-
ically discussed using models. The most famous models are the Erdös–Rényi (ER)
random network [11] and the Barabási–Albert (BA) model [12], which are used as
ideal models in widely ranging fields from sociology to physics. However, the struc-
ture indicated by these models is very different from real biological networks. Thus, a
new model is required to realize a more accurate representation of real networks. The
theory for evolution of biological networks is still insufficient; therefore, we need to
propose an alternative theory (model).

In this chapter, we introduce simple evolving network models that are in good
agreement with real biological networks and their mathematical frameworks.

This chapter is divided into three main sections. In Section 3.2, we propose a
unification of different models, which explains the structural properties of real bio-
logical networks. We simplify the complicated models. Furthermore, with regard to
simplification, the network model without parameter tunings is considered in most

www.it-ebooks.info

http://www.it-ebooks.info/

UNIFIED EVOLVING NETWORK MODEL 79

existing models in Section 3.3. These models describe unipartite networks. However,
the biological networks are often represented as bipartite networks such as metabo-
lite distributions (species–metabolite networks). Thus, we also represent a bipartite
network model in Section 3.4.

3.2 UNIFIED EVOLVING NETWORK MODEL: REPRODUCTION OF
HETEROGENEOUS CONNECTIVITY, HIERARCHICAL MODULARITY,
AND DISASSORTATIVITY

As mentioned above, several remarkable structural properties have thus far been
characterized in biological networks via network analysis.

A well-known feature of networks is heterogeneous connectivity, which indicates
that the node degree k (the number of edges that the node has) approximately follows
a power–law distribution: P(k) ∝ k−γ . The exponent γ , called the “degree exponent,”
is empirically known to be between 2 and 3. This power–law degree distribution im-
plies that a few nodes (hubs) integrate numerous nodes while most of the remaining
nodes do not; this feature is clearly different from that of the Poisson (homogeneous)
distribution obtained from classical (ER) random networks. To reproduce heteroge-
neous connectivity, the BA model was proposed. This model has two mechanisms:
the growth mechanism, in which an added node connects to existing nodes, and the
preferential attachment (PA) mechanism, in which the existing node i is selected
with the probability �i = ki/

∑
j kj , where ki is the degree (the number of edges) of

node i. The BA model generates heterogeneous networks with the power–law degree
distribution P(k) ∝ k−3 [12].

The other structural property of networks is hierarchical modularity. Most real-
world networks are clustered; this is characterized by the clustering coefficient C.
The clustering coefficient of node i (Ci) is defined as 2Mi/[ki(ki − 1)], where Mi is
the number of edges among the neighboring nodes of node i. In real-world networks,
there exists a power–law relationship between Ci and ki with the exponent −1, that is,
Ci ∝ k−1

i ; the ER model and the BA model do not represent this relationship because
the network is randomly constructed with a given degree sequence. This power–law
relationship is reproduced by the hierarchical organization of modules (small dense
networks) [13]; thus, it is referred to as hierarchical modularity. Furthermore, the triad
formation [14] and the merging module [15] also reproduce this property. Although
there are several models, the most important aspect is the proportional relationship
between the degree of node i and the number of modules including node i (the number
of edges among the neighbors of node i).

In addition, disassortativity [16] is also a well-known property. The correlation
of the degree between a node and its neighboring node (hereafter referred to as “de-
gree correlation”) is useful for explaining disassortativity. Disassortativity indicates
negative degree correlations. The ER model and the BA model indicate no such cor-
relation because their networks are randomly constructed. In such a random network
with a given degree sequence, the probability of transition from nodes with degree k

to nodes with degree k′, P(k′|k), is k′P(k′)N/(2E) [17]. Thus, the expected degree of

www.it-ebooks.info

http://www.it-ebooks.info/

80 MODELING FOR EVOLVING BIOLOGICAL NETWORKS

neighboring nodes is
∑

k′ k′P(k′|k) = 〈k2〉/〈k〉, where 〈· · · 〉 denotes the average over
all nodes. This result indicates that the degree correlation is independent of degree k

(i.e., there is no correlation).
This is particularly caused in the BA model due to the preferential attachment in

which a node (node i) gets new edges with the probability �i that is proportional
to its own degree, that is, �i = ki/

∑
j kj . Due to this preferential attachment, the

transition probability is almost similar to the above equation.
We cannot neglect preferential attachment because this mechanism provides het-

erogeneous connectivity. To solve this problem, we need to consider information
other than the degree. This information is based on studies on competition dynamics
[18] and weighted networks [19,20], which discuss the effects of fitness on a net-
work structure. Here, we also refer to this information as fitness. By considering this
information, the networks have negative degree correlations [21,22].

As mentioned above, these different structural properties are explained by different
models; thus, the theory for network evolution is complicated. For a simple under-
standing of this theory, we need to construct a new convenient model that includes
several models. In this section, we introduce a simple unified model for reproducing
heterogeneous connectivity, hierarchical modularity, and disassortativity.

3.2.1 Network Model

Our model includes growth by merging modules and the fitness-driven (FD) mecha-
nism (see Ref. 23 for biological implications of this model).

Growth by Merging Modules. A network grows by the merging of new modules
to the existing nodes of a network over time (see Fig. 3.2c). m/a is the first
control parameter of the model where a and m denote the number of nodes
of the complete graph to be merged in and the number of merged node(s),
respectively. It should be noted that the process develops without adding extra
edges [15].

10

0 5

(a) (b) (c)

10

15

0 5

00

15

0 5

FIGURE 3.2 Schematic diagram of the growth process of our model network with a = 3,
m = 1, and ξ = 5. (a) Selection of node(s) by the FD–PA mechanism, Equation 3.1. The filled
node is selected by the FD–PA mechanism. Each number in the figure indicates the fitness of a
corresponding node. (b) Updating of the fitness. The selected node’s fitness increases according
to the updating rule, Equation 3.2. (c) Merging new modules. As a result, (a − m) new node(s)
are added and filled with gray, their initial fitness is considered as zero.

www.it-ebooks.info

http://www.it-ebooks.info/

UNIFIED EVOLVING NETWORK MODEL 81

Fitness-Driven Preferential Attachment. The standard PA mechanism of the BA
model is the probability �i that node i is chosen to get an edge and is propor-
tional to the degree of node i; hence, �i = ki/

∑
j kj , where ki is the degree

of node i. The mechanism only considers the degrees at the nodes. Here, we
additionally consider the probability that node i is selected according to degree
ki and fitness fi; we express the probability as

�∗
i = ki + fi∑

j(kj + fj)
. (3.1)

Updating Rule of Fitness. Moreover, we consider the change in the fitness of node
i. When node i is selected using the FD–PA mechanism given in Equation 3.1,
the fitness of node i increases as follows:

fi ← fi + ξ, (3.2)

where ξ takes a constant value and is the second control parameter in the model,
indicating the strength of incidence of the fitness.

Taken together, our model networks are generated by the following procedures.

(i) We start from a module that is a complete graph consisting of a (≥3) nodes.
For fitness, we assign zero to all nodes in the module.

(ii) At every time step, a new module of the same size is merged to the existing
m (< a) nodes. The number of network nodes increases by (a − m) after the
merger of module into the existing network.

(iii) When merging the module, the FD–PA mechanism, Equation 3.1, is used to
select m old nodes (see Fig. 3.2a). The fitnesses of the old nodes are then in-
creased using the updating rule, Equation 3.2 (see Fig. 3.2b). Finally, zeros are
assigned to the fitnesses of the new nodes (see Fig. 3.2c). When merging mod-
ules, the multiple edges between nodes selected by the FD–PA mechanism may
occur. Such edges between the selected nodes are counted, and they contribute
to the FD–PA mechanism in the subsequent steps.

When a > m and ξ ≥ 0, the model network evolves in time steps. In addition, our
model is equivalent to the BA model with the specific condition: a = 2, m = 1, and
ξ = 0.

3.2.2 Degree Distribution

In this section, we present the analytical and numerical solutions for the degree dis-
tribution of our model.

In order to describe the degree distribution, we employ the mean-field-based anal-
ysis [12,22]. The standard approach cannot be directly applied due to the inclusion
of the fitness updating. We express the degree and fitness as

Fi = ki + fi (3.3)

www.it-ebooks.info

http://www.it-ebooks.info/

82 MODELING FOR EVOLVING BIOLOGICAL NETWORKS

and investigate the time evolution of Fi. Since the fitness updating rule is represented
as fi ← fi + ξ, Fi satisfies

Fi =
(

ξ

a − 1
+ 1

)
ki − ξ, (3.4)

indicating the proportional relationship between Fi and ki.
The time evolution of Fi is described as

dFi

dt
= m(a − 1 + ξ)

Fi∑
j Fj

, (3.5)

where
∑

j Fj ≈ [a(a − 1) + mξ]t. The solution of the equation with Fi(t = s) =(
a
2

) + ξ = A(a, ξ) as an initial condition for Equation 3.5 is

Fi(t) = A(a, ξ)
(t

s

)β

, (3.6)

where β = [m(a − 1 + ξ)]/[a(a − 1) + mξ]. Because s/t denotes the probability that
Fi is larger than a given F , Equation 3.6 is rewritten as

P(≥ F) = A(a, ξ)1/βF−1/β, (3.7)

which corresponds to a cumulative probability. From Equation 3.7, the probability
distribution for F is given as

P(F) = − d

dF
P(≥ F) = A(a, ξ)1/β

β
F−γ , (3.8)

where γ = (1/β) + 1. Finally, substituting Equation 3.4 into Equation 3.8, we obtain
the degree distribution

P(k)
 B(a, ξ, γ)k−γ , (3.9)

where B(a, ξ, γ) = A(a, ξ)γ−1[ξ/(a − 1) + 1]−γ/(γ − 1). The degree distribution
obeys the power law with the degree exponent

γ = (a + m)(a − 1) + 2mξ

m(a − 1 + ξ)
, (3.10)

demonstrating that our model network contains the scale-free feature.
In order to confirm the analytical predictions, we performed numerical simulations

of networks, generated using our model. Figure 3.3 shows degree distributions with
a = 5, N = 50, 000, and different values of m ∈ [1, 4] and ξ ∈ [0, 15]. These degree
distributions follow the power law, reflecting the scale-free feature.

Figure 3.3a shows the degree distributions with m = 2 and different values of ξ.
The degree exponents decay with increasing ξ. Figure 3.3b shows the degree distribu-
tions with ξ = 7 and different values of m. The degree exponents decay with increas-
ing m. The numerical results and theoretical predictions are in excellent agreement,
demonstrating that γ is a function of m/a and ξ.

www.it-ebooks.info

http://www.it-ebooks.info/

UNIFIED EVOLVING NETWORK MODEL 83

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

101 102

P
(k

)

ξ=0
ξ=3
ξ=7

ξ=11
ξ=15

(b)(a)

10-5

10-4

10-3

10-2

10-1

100

101

102

103

101 102

k

m=1
m=2
m=3
m=4

k

FIGURE 3.3 Degree distributions P(k) with a = 5 and N = 50, 000 (shifted for clarity).
Different symbols correspond to different numerical results. Solid lines represent the rela-
tionship P(k) ∝ k−γ , where γ is predicted by Equation 3.10. (a) ξ dependency with m = 2.
(b) m/a dependency with ξ = 7.

3.2.3 Degree-Dependent Clustering Coefficient

In this section, we show the analytical and numerical solutions of the degree-
dependent clustering coefficient.

First, we provide the analytical solution for the degree-dependent clustering coef-
ficient of our model. Since our model grows due to the merging of modules (see Fig.
3.2), the number of edges among neighbors of node i is approximately described [15]
as

Mi
 Si

(
a − 1

2

)
= Si(a − 1)

a − 2

2
, (3.11)

where Si corresponds to the number of selections of node i with the PA, as in
Equation 3.1. In our model, because the degree of node i is expressed as ki = Si(a − 1),
Equation 3.11 is rewritten as

Mi
 a − 2

2
ki, (3.12)

indicating the proportional relationship between Mi and ki. Finally, substituting Equa-
tion 3.12 into the definition of the clustering coefficient (i.e., Ci = 2Mi/[ki(ki − 1)]),
we obtain the degree-dependent clustering coefficient

C(k)
 a − 2

k
∝ k−1. (3.13)

The degree-dependent clustering coefficient follows the power law with the exponent
−1 when a ≥ 3, reflecting the hierarchical modularity of our model network.

Next, we present the numerical results of the degree-dependent clustering coeffi-
cient of our model in order to verify the analytical solution. In Figure 3.4, we show

www.it-ebooks.info

http://www.it-ebooks.info/

84 MODELING FOR EVOLVING BIOLOGICAL NETWORKS

101 102 103

C
(k

)

ξ=0
ξ=3
ξ=7

ξ=11
ξ=15

100

10–1

10–2

100

10–1

10–2

101 102 103

k

m=1
m=2
m=3
m=4

(b)(a)

k

FIGURE 3.4 Degree-dependent cluster coefficient C(k) with a = 5 and N = 50, 000. Differ-
ent symbols correspond to the different numerical results. Solid lines represent the relationship
∝ k−1. (a) ξ dependency with m = 2. (b) m dependency with ξ = 7.

the degree-dependent clustering coefficient with a = 5, N = 50, 000, and different
values of m ∈ [1, 4] and ξ ∈ [0, 15].

Figure 3.4a shows the degree-dependent clustering coefficient with m = 2 and
different values of ξ. C(k) follows the power law with the exponent −1 despite the
varying ξ values. Figure 3.4b shows degree-dependent clustering with ξ = 7 and
different m values. Moreover, C(k) follows the power law with the exponent −1 for
a large value of k. For a small value of k, the cut-off becomes more prominent with
increasing m as it moves further away from the approximation of Equation 3.11.

The degree-dependent clustering coefficient follows the power law with the expo-
nent more or less equal to −1, reflecting the hierarchical modularity of networks.

3.2.4 Average Clustering Coefficient

To examine the parameter-dependency of the modularity (clustering property) for
the entire network, we employ an average clustering coefficient C. The coefficient
is defined as C = 1

N

∑N
i=1 Ci. A high value of C implies that the network has high

modularity.
Figure 3.5 shows the numerical result of C in our model network with a = 5,

N = 12, 800, and different values of m ∈ [1, 4] and ξ ∈ [0, 15]. C tends to increase
by a greater extent for smaller m/a and larger ξ. Since the small and large m/a lead
to different effects on C, Figure 3.5a shows a valley in the middle of m/a. In the case
of small m/a, C can remain high because the modules combine via a few common
nodes. In contrast, in the case of large m/a, C is low because the networks tend to
be randomized, which is due to the fact that the modules combine via many common
nodes. In this case, however, the FD mechanism helps to increase the fitness of the
nodes in the modules, inducing the formation of a cluster with high-edge density. As a
result, C increases with m/a. Due to the trade-off mechanism, a valley-shaped curve
is obtained. In addition, C is less sensitive for large ξ.

www.it-ebooks.info

http://www.it-ebooks.info/

UNIFIED EVOLVING NETWORK MODEL 85

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

0 2 4 6 8 10 12 14 16

m=1
m=2
m=3
m=4

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C C

m/a

ξ=0
ξ=1
ξ=3
ξ=5
ξ=7
ξ=9
ξ=11
ξ=13
ξ=15

(a) (b)

ξ

FIGURE 3.5 The dependency of the average clustering coefficient C (a = 5 and N =
12, 800) on the parameter (a) m/a and (b) ξ.

3.2.5 Degree Correlation

The degree correlation is a structural property that characterizes assortativity of the
networks and represents the average degree of the neighbors of nodes with degree k.
This correlation is defined as

k̄nn(k) =
∑N

i=1 �i × δ(ki − k)∑N
i=1 δ(ki − k)

, (3.14)

where δ(x) is Kronecker’s delta function. This function returns 1 when x = 0 and
returns 0 otherwise. �i denotes the average nearest-neighbor degree and is expressed
as

�i = 1

ki

∑
h∈V (i)

kh, (3.15)

where V (i) corresponds to the set of neighbors of node i.
Here, we provide the numerical solutions for the degree correlation of our model.

Figure 3.6 shows the degree–degree correlations with a = 5, N = 50, 000, and dif-
ferent values of m and ξ. The correlations follow the power law; k̄nn(k) ∝ kν with
−1 < ν < 0 as a rough observation. Negative and larger values of ν are observed for
larger m/a and ξ.

Figure 3.6a shows the degree correlations with m = 2 and different ξ val-
ues. The exponent ν decays with increasing ξ. Figure 3.6b shows the degree–
degree correlations with ξ = 7 and different m values. The exponent ν decays with
increasing m.

Due to the fitness updating and the PA mechanism, the degree correlations
follow the power law, reflecting the disassortativity of the networks. As pre-
viously reported, disassortativity is not reproduced if we only consider the PA
mechanism [15,21].

www.it-ebooks.info

http://www.it-ebooks.info/

86 MODELING FOR EVOLVING BIOLOGICAL NETWORKS

101

102

101 102

k
nn

(k
)

100

101

102

103

104

101 102 103

kk

m=1
m=2
m=3
m=4

ξ=3
ξ=0

ξ=7
ξ=11
ξ=15

(a) (b)

FIGURE 3.6 Degree correlations k̄nn(k) with a = 5 and N = 50, 000. (a) ξ dependency
with m = 2. The solid and dashed lines correspond to ∝ k−0.3 and ∝ k0.2, respectively. (b) m

dependency with ξ = 7. The solid line represents the relationship ∝ k−0.8.

3.2.6 Assortative Coefficient

The assortative coefficient (AC) [16] can be considered to be a compendium parameter
of the degree correlations and is defined as

r = 4〈kikj〉 − 〈ki + kj〉2

2〈k2
i + k2

j 〉 − 〈ki + kj〉2
, (3.16)

where ki and kj are the degrees of two nodes at the ends of an edge and 〈· · · 〉 denotes
the average over all edges. In other words, the AC is the correlation coefficient for the
degree correlation k̄nn(k) and takes the values −1 ≤ r ≤ 1. The relationship between
the AC and the network structures is described as follows:

(i) In the case of r < 0, low-degree nodes tend to connect to high-degree nodes,
indicating disassortativity. Hence, the degree correlation k̄nn(k) decreases with
increasing k.

(ii) In the case of r = 0, the degree–degree correlation k̄nn(k) is not observed.

(iii) In the case of r > 0, high-degree nodes tend to connect to high-degree nodes,
reflecting assortativity. Hence, the degree correlation k̄nn(k) increases with
degree k.

Figure 3.7 shows the numerical solutions of the AC for our model with a = 5,
N = 12, 800, and different values of m ∈ [1, 4] and ξ ∈ [0, 15]. For larger m/a and
ξ values, the large negative AC is generally observed. For smaller ξ ∈ [0, 1], on the
other hand, the valley-shaped curves (once, r takes positive instead of negative values)
emerge because positive degree correlations are exhibited in the case of m/a ≤ 0.5
[15]. For larger ξ ∈ [3, 15], assortative coefficients r monotonically decrease (upward
curve) with increasing m/a.

www.it-ebooks.info

http://www.it-ebooks.info/

MODELING WITHOUT PARAMETER TUNING 87

–0.4

–0.3

–0.2

–0.1

0

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

r

m/a

–0.4

–0.3

–0.2

–0.1

0

0 2 4 6 8 10 12 14 16

m=1
m=2
m=3
m=4

ξ=3

ξ=0

ξ=7
ξ=5

ξ=1

ξ=11
ξ=9

ξ=15
ξ=13

(a) (b)

ξ

FIGURE 3.7 Assortative coefficient r with a = 5 and N = 12, 800. The dependency on the
parameter m/a (a) and ξ (b). The vertical axes of (a) and (b) are inverted for clarity.

3.2.7 Comparison with Real Data

In order to validate our model, we compare the structural properties of biological
networks with those of our model networks. We construct two different types of
networks: the gene regulatory [24] and the metabolic [25] networks of E. coli. The
gene regulatory network is represented as a set of graphs consisting of nodes and
edges, which correspond to genes and the interactions among genes, respectively.
For simplicity, we extract the largest component from the networks and replace the
directed and/or weighted edges with undirected and/or unweighted edges. Moreover,
we remove the multiple edges and self-loops. The metabolic network is transformed
by the same procedures.

In Figure 3.8, we show the structural properties of the biological networks and our
model networks. Our model is found to be in good agreement with the data of the real
network, demonstrating that our model reproduces the three previously mentioned
remarkable structural properties that are widely shared among biological networks.

3.3 MODELING WITHOUT PARAMETER TUNING: A CASE STUDY OF
METABOLIC NETWORKS

In the previous section, we introduced a simple model for reproducing several struc-
tural properties observed in real-world biological networks. Furthermore, this model
network shows good qualitative and quantitative agreement with real data.

For model fitting, we need to tune model parameters. The parameters may be esti-
mated by minimizing the difference between the model and real data using statistical
methods. However, the optimal solutions may require substantial calculation, after
which multiple optimal solutions may be obtained. Furthermore, the possibility of
trivial agreements (e.g., over-fittings) may remain if the model has several tunable
parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

88 MODELING FOR EVOLVING BIOLOGICAL NETWORKS

 0.001

 0.01

 0.1

1

1 10 100

P
(k

)
P

(k
)

k k k

k k k

C
(k

)
C

(k
)

C
(k

)

k nn
(k

)<
k>

/<
k2 >

k nn
(k

)<
k>

/<
k2 >

100 101 102

(I)

(II)

 0.01

 0.1

1

1 10 100

10–3

10–2

10–1

100

10–3

10–2

10–1

100

100 101 102 103

(I)

(II)
 1.6

 0.8

 0.4

 0.2
1 10 100

10–2

10–1

100

100 101 10–2

(I)

(II)

FIGURE 3.8 Comparison between structural properties of biological networks and those of
model networks. The left column shows the degree distributions, P(k). Degree-dependent clus-
tering coefficients C(k) are in the middle column. Degree–degree correlations k̄nn(k) constitute
the right column. These degree–degree correlations are divided by 〈k2〉/〈k〉 for normalization.
The symbols and dashed lines denote the data of biological networks and our model networks,
respectively. (I) Gene regulatory network in E. coli [24] and our model with a = 3, m = 1,
and ξ = 20. (II) Metabolic networks in E. coli [25] and our model with a = 3, m = 2, and
ξ = 1. The size of the model network is the same as the total number of nodes of the biological
network. The parameters a, m, and ξ are determined by minimizing the distributional distance,
which corresponds to the Kolmogorov–Smirnov statistics (distances) for degree distributions
between the predicted distributions and the empirical distributions.

In order to avoid this problem, we need to eliminate parameter tunings and construct
models in which parameters are determined from observable statistics obtained from
real-network data, such as the number of nodes.

In this chapter, we focus on metabolic networks and introduce a network model
without parameter tuning.

3.3.1 Network Model

Here, we consider metabolic networks in which nodes and edges represent metabolites
and metabolic reactions (substrate–product relationships based on atomic tracing [26])
and propose a simple model that reproduces the structural properties of metabolic

www.it-ebooks.info

http://www.it-ebooks.info/

MODELING WITHOUT PARAMETER TUNING 89

(a)

(b)

(c)

1–p

p

q

1–q

FIGURE 3.9 Schematic diagram of the growth mechanisms of the model. (a) Event I. The
black and gray nodes represent a new node and a randomly selected existing node, respectively.
(b) and (c) Event II. The dashed lines correspond to new edges. The triangular nodes are
randomly selected existing nodes. The quadrangular nodes are existing nodes, selected by a
random walk from each red node. The new edge becomes a short-cut path between the triangular
node and the quadrangular node.

networks with two parameters, p and q. These parameters are determined from the
statistics of real data (see Section 3.3.3 for details).

In general, it is believed that metabolic networks evolve by a reaction (enzyme)
gain due to evolutionary events (see Ref. 27 for details). In this case, we can consider
two situations: the case that a new reaction occurs between a new metabolite and an
existing metabolite (Event I) and the case that a new reaction occurs between existing
metabolites (Event II).

With the above consideration, the modeling is as follows.

(i) Event I occurs with the probability 1 − p (see Fig. 3.9a). In this case, a new
node (the black node) is connected to a randomly selected existing node (the
gray node).

(ii) Event II occurs with the probability p (see Fig. 3.9b and c). In this case, a
short-cut path bypasses the path between a node and another node. The short-
cut path is generated via a random walk because it may be drawn based on
the existing network structure. For example, such short-cut chemical reactions
may occur between related metabolic compounds, which are nearly located on
the metabolic pathway (see Ref. 27 for details).Hence, we need to consider
the length of the bypassed path. However, when we investigate the degree
distribution and the degree-dependent clustering coefficient, it is sufficient to
consider only two cases: (1) the length is equal to 2 and (2) the length is greater
than or equal to 3. This assumption (of considering only two cases) is valid
because the degree distribution is independent of the bypassed path length and
the clustering coefficient is influenced only when a path of length 2 is bypassed
(see Section 3.3.2 for the details). Therefore, we express the bypassed path

www.it-ebooks.info

http://www.it-ebooks.info/

90 MODELING FOR EVOLVING BIOLOGICAL NETWORKS

length using the parameter q as follows. First, an initial node (the triangular
nodes in Fig. 3.9b and c) is selected at random. Next, with the probability q,
we select a path of length 2 based on a random walk from the initial node. In
contrast, with the probability 1 − q, we select a path with length greater than or
equal to 3 based on a random walk from the initial node. Thus, the parameter
q roughly corresponds to the bypassed path length, which is the path length
between nodes connected through a short-cut path. Finally, a new edge (short-
cut path) is drawn between the initial node (the triangular nodes in Fig. 3.9b
and c) and the terminal node (the quadrangular nodes in Fig. 3.9b and c). Note
that a triangle is accordingly generated with the probability pq.

3.3.2 Analytical Solution

Degree Distribution. First, we show the analytical solution for degree distribution
of the model via mean-field-based analysis [12,22].

We consider the time evolution of ki, which is the degree of node i. When
Event I occurs, the degree of node i increases by one with the probability 1/N,
where N is the total number of nodes. Further, when Event II occurs, two
existing nodes are selected and their respective degrees increase. The degree
of one node increases by one with the probability 1/N, because this node
is randomly selected. The degree of another node increases by one with the
probability ki/

∑
j kj , because this node is selected by a random walk from a

randomly selected node. It is reported that the probability that a walker arrives
at this node equals ki/

∑
j kj , irrespective of the number of steps in the random

walk [28]. Note that this probability equals to that of the preferential attachment.
Thus, the time evolution of ki is

d

dt
ki = (1 − p)

1

N
+ p

[
1

N
+ ki∑

j kj

]
, (3.17)

where N = (1 − p)t, because the number of nodes increases by one with the
probability 1 − p, and

∑
j kj = 2t because one edge is added each time. It

should be noted that this equation is independent of the bypassed path length
(the parameter q). The solution of the above equation with the initial condition
ki(t = s) = 1 is

ki = [A(p) + 1]
(t

s

)p/2
− A(p), (3.18)

where A(p) = 2/[p(1 − p)].
From the above equation, because s/t = P(≥k) as shown in the previous

section, the cumulative distribution P(≥k) is

P(≥k) = [A(p) + 1]2/p[k + A(p)]−2/p. (3.19)

www.it-ebooks.info

http://www.it-ebooks.info/

MODELING WITHOUT PARAMETER TUNING 91

Since P(k) = − d
dk

P(≥k), we finally obtain the degree distribution

P(k) = (γ − 1)[A(p) + 1]γ−1[k + A(p)]−γ , (3.20)

where the degree exponent γ is

γ = 2

p
+ 1. (3.21)

As shown in Equation 3.20, the degree distribution follows a power law with a
cutoff within a small degree.

Degree-Dependent Clustering Coefficient. Next, we show an analytical solution
for the degree-dependent clustering coefficient of the model via mean-field-
based analysis.

The clustering coefficient of node i is defined as Ci = 2Mi/[ki(ki − 1]),
where Mi is the number of edges among the neighbors of node i. We consider the
time evolution of Mi. The number of edges of Mi increases with the probability
pq, because Mi increases when Event II occurs and a path of length 2 is bypassed
(a triangle is generated). In other words, we do not need to consider a bypassed
path with length greater than or equal to 3. Next, the Mi of each node, which
belongs to the triangle, approximately increases by one. The Mi of one node
increases by one with the probability 1/N, because this node is selected at
random. The Mis of the other two nodes increase by one with the probability
ki/

∑
j kj , because these nodes are selected by a random walk. Therefore, the

time evolution of Mi is

d

dt
Mi
 pq

[
1

N
+ 2

ki∑
j kj

]
, (3.22)

where N = (1 − p)t and
∑

j kj = 2t. Moreover, ki = [A(p) + 1](t/s)p/2 −
A(p), as shown in Equation 3.18.

The solution of the above equation with the initial condition Mi(t = s) = 0 is

Mi = 2q[A(p) + 1]
(t

s

)p/2
+ q(p − 2)

1 − p
ln

t

s
− 2q[A(p) + 1], (3.23)

where A(p) = 2/[p(1 − p)]. From Equation 3.18, since ki = [A(p) +
1](t/s)p/2 − A(p), this equation is rewritten as

Mi = 2q

[
(ki − 1) − 1

2
(2 − p)A(p) ln

ki + A(p)

1 + A(p)

]
. (3.24)

Substituting this equation into the definition of clustering coefficient described
above, we finally obtain the degree-dependent clustering coefficient

C(k) = q

[
4

k
− 2(2 − p)A(p)

k(k − 1)
ln

k + A(p)

1 + A(p)

]
. (3.25)

www.it-ebooks.info

http://www.it-ebooks.info/

92 MODELING FOR EVOLVING BIOLOGICAL NETWORKS

Average Clustering Coefficient. Finally, we show an analytical solution for the
average clustering coefficient of the model.

The average clustering coefficient is expressed as the summation of
the product of the degree distribution and the degree-dependent clustering
coefficient: C = ∑Km

k=2 P(k) × C(k), where Km is the maximum degree. We
approximate this summation by the integral equation:

C =
∫ Km

2
P(k) × C(k)dk, (3.26)

The maximum degree indicates that the cumulative probability equals to 1/N;
thus, P(≥Km) = 1/N. From Equation 3.19, Km can be expressed as

Km = Np/2[A(p) + 1] − A(p). (3.27)

Equation 3.26 is solved via numerical integration because it is analytically
unsolvable.

3.3.3 Estimation of the Parameters

As explained in Section 3.3.1, this model has two parameters p and q. In order
to reproduce the structural properties of metabolic networks, we need to estimate
these parameters in real-world networks. In this section, we discuss the approach for
estimating these parameters.

Parameter p. Here, we consider the time evolutions of the number of nodes N

and the number of edges E.
By the definition of this model, these time evolutions are described as N =

(1 − p)t and E = t. Therefore, the parameter p is estimated as

p = 1 − N

E
, (3.28)

where N and E are obtained from real metabolic networks.

Parameter q. Here, we consider the number of triangles T of this model.
In this model, when Event II occurs, the number of triangles approximately

increases by one with the probability pq, because a triangle is generated with
the probability q. That is,

T
 pqt. (3.29)

Since N = (1 − p)t, this equation is rewritten as

T
 pq
N

1 − p
. (3.30)

From this equation, therefore, the parameter q is estimated by

q
 T

E − N
, (3.31)

where T , N, and E are obtained from real metabolic networks.

www.it-ebooks.info

http://www.it-ebooks.info/

MODELING WITHOUT PARAMETER TUNING 93

100 101 102

P
(k

)

k k

Real data

(a) (b)

Our model

10–3

–2

–1

10

10

10

10–3

–2

–1

10

10

0 100

100 101 102

FIGURE 3.10 Comparison between the degree distribution of our model and that of real
metabolic networks of E. coli (a) and Bacillus subtilis (b). The symbols represent the data for
real networks. The lines are obtained from Equation 3.20.

3.3.4 Comparison with Real Data

Here, we compare structural properties of this model with those of real metabolic
networks.

First, we obtain the parameters p and q from the metabolic network of each or-
ganism using Equations 3.28 and 3.31, respectively. Substituting the parameters into
the equations, shown in Section 3.3.2, we obtain the structural properties predicted
from this model.

Figure 3.10 shows a comparison between the degree distribution of our model
and that of real metabolic networks. We provide the P(k) values of two well-known
organisms.

Figure 3.11 shows a comparison between the degree exponent of our model and that
of real metabolic networks. For comparison, the degree exponents are obtained by the
maximum likelihood method, considering a cutoff, represented by A(p), as follows:

γ = 1 + N

[
N∑

i=1

ln
ki + A(p)

kmin + A(p)

]−1

. (3.32)

This value is different from that obtained by the original maximum likelihood
method [29].

Figure 3.12 shows a comparison between the degree-dependent clustering coeffi-
cient of our model and that of real metabolic networks. We show C(k) for the same
two organisms.

Figure 3.13 shows a comparison between the average clustering coefficient of
our model and that of real metabolic networks. The predicted average clustering
coefficients are obtained with Equation 3.26 via numerical integration.

www.it-ebooks.info

http://www.it-ebooks.info/

94 MODELING FOR EVOLVING BIOLOGICAL NETWORKS

 8

 10

 12

 14

 16

 18

 20

 22

 8 10 12 14 16 18 20 22

γ r
ea

l

γtheory

FIGURE 3.11 Comparison between the degree exponent γ of our model (theoretical) and
that of real metabolic networks (real). The dashed line represents γreal = γtheory.

As shown in Figures 3.10–3.13, the theoretical predictions are in good agreement
with the real data, indicating that this model can reproduce the structural properties
of real metabolic networks.

As mentioned above, this model has a few parameters, which can be estimated very
easily. Furthermore, the model parameters relate to the frequency of evolutionary
events such as horizontal gene transfers and gene duplications, through which the
metabolic networks expand (e.g., see Refs. [30,31]). This model may be useful for
the estimation of missing pathways and the evolutionary origin of metabolic reactions.

0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

5 10 15 20 25

C
(k

)

k

Real data
Our model

0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

5 10 15 20

k

(a) (b)

FIGURE 3.12 Comparison of the degree-dependent clustering coefficient between our model
and the real metabolic networks of (a) E. coli and (b) B. subtilis. The symbols indicate the data
for real networks. The lines are obtained from Equation 3.25.

www.it-ebooks.info

http://www.it-ebooks.info/

BIPARTITE RELATIONSHIP: A CASE STUDY OF METABOLITE DISTRIBUTION 95

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.01 0.02 0.03 0.04 0.05 0.06

C
re

al

Ctheory

FIGURE 3.13 Comparison between the average clustering coefficient C of our model (the-
oretical) and that of real metabolic networks (real). The dashed line shows Creal = Ctheory.

3.4 BIPARTITE RELATIONSHIP: A CASE STUDY OF METABOLITE
DISTRIBUTION

In the previous sections, we have focused on simple (unipartite) networks consisting
of one type of nodes and edges between its nodes. For instance, in the metabolic
networks mentioned in the above section, the nodes are metabolites and the edges are
drawn between these nodes (i.e., between the metabolites). However, we sometimes
observe biological systems represented as bipartite networks.

An interesting example of this is metabolite distributions (or species–metabolite
networks), which indicate how metabolites are distributed among species (i.e., the
relationship between species and metabolites). Living organisms produce various
types of compounds via their metabolisms, which are believed to adaptively shape-
shift with changing environment over a long evolutionary history. Thus, metabolite
distributions are important in order to elucidate the design principles of metabolisms
such as adaptive mechanisms.

The relationship between two types of objects is represented as a bipartite network.
Bipartite networks are defined as graphs having two different node sets (in this case,
species and metabolites), in which edges are only drawn between one node set and
the other node set (interconnectivity). Notably, there is no edge between the nodes be-
longing to the same node set (intraconnectivity). In the species–metabolite networks,
an edge is drawn between a species node and a metabolite node when the species has
the metabolite.

Another example of bipartite relationships is the relationship between proteins and
the drugs targeting the proteins (i.e., drug–target networks) [32]. Further examples
in other fields are the mutualistic relationship between plants and pollinators in eco-
logical systems and manufacturer–contractor interactions in social systems [33]. As
mentioned above, bipartite relationships are concepts utilized in a wide range of fields
and are important to understand several systems.

www.it-ebooks.info

http://www.it-ebooks.info/

96 MODELING FOR EVOLVING BIOLOGICAL NETWORKS

FIGURE 3.14 A partial species–flavonoid network for Lamiaceae (the Japanese basil family)
drawn by the yEd Graph Editor [8]. The black squares and white circles correspond to plant
species and flavonoids, respectively.

In this section, by focusing on the example of metabolite distributions, we present
several structural properties observed in real bipartite relationships and introduce a
simple bipartite network model.

3.4.1 Structural Properties of Metabolite Distributions

Metabolite distribution refers to the distribution of metabolites among species (i.e.,
species–metabolite relationship). There are several types of metabolites. Here, we
focus on flavonoids, a type of metabolites. Flavonoids are particularly interesting
examples when considering metabolite distributions among species. Previous studies
[34–37] mention the importance and details of flavonoids.

We illustrate the example of a partial species–flavonoid network for Lamiaceae
(the Japanese basil family) in Figure 3.14. The node degrees of species nodes (black
squares) and flavonoid nodes (white circles) are found to be extremely varied.

Heterogeneous Connectivity. In order to characterize the tendency of connectivity,
we investigated the frequency distributions of the node degree (degree distri-
bution) in species–flavonoid networks. In bipartite networks, we can find two
types of degree distributions due to the two types of nodes (i.e., species nodes
and flavonoid nodes); thus, there are two types of node degrees. The node degree
for a species node nf corresponds to the number of flavonoids in its species.

www.it-ebooks.info

http://www.it-ebooks.info/

BIPARTITE RELATIONSHIP: A CASE STUDY OF METABOLITE DISTRIBUTION 97
F

re
qu

en
cy

No. of flavonoids in a species

Fabaceae
Asteraceae
Lamiaceae

Rutaceae
Moraceae
Rosaceae

Whole

F
re

qu
en

cy

No. of shared species of a flavonoid

Fabaceae
Asteraceae
Lamiaceae

Rutaceae
Moraceae
Rosaceae

Whole

(a) (b)
10–0

100 101 102 100 101 102

10–1

10–2

10–3

10–4

10–0

10–1

10–2

10–3

10–4

FIGURE 3.15 Degree distributions of the species–flavonoid networks. (a) Frequency distri-
bution of the number of flavonoids in a plant species. (b) Frequency distribution of the num-
ber of shared species of a flavonoid. The symbols indicate the distributions for family-based
species–flavonoid networks. The solid lines represent the distributions for all-encompassing
species–flavonoid networks.

On the other hand, the node degree for a flavonoid node ns denotes the number
of species possessing its flavonoid.

As shown in Figure 3.15, the frequency distributions of nf and ns roughly
follow the power law, implying the heterogeneous distribution of flavonoids
among species. According to this power law, most flavonoids are shared by a
few species; however, a few flavonoids are conserved in many species. Sim-
ilarly, most species have flavonoids of a few types; however, a few species
have flavonoids of many types. Furthermore, the heterogeneous distributions
of flavonoids among species characterized by the power–law statistics are ap-
proximately conserved between family-based species–flavonoid networks, sug-
gesting a scale-free feature. Regarding the number of metabolites in a species
following power–law distributions, a similar result has been additionally re-
ported in Ref. [38]. The biological meaning of heterogeneous connectivity in
metabolite distributions is discussed in Ref. [36].

Nested Structure. We here consider the two types of nodes (A and B) in a bipartite
network. In this case, the nested structure indicates that the set of B nodes con-
nected to a given A node is a subset of B nodes connected to other A nodes (see
Fig. 3.16). In other words, this structure in metabolite distributions implies that
a plant’s metabolite composition is a subset of other plants’ metabolite compo-
sitions. This structural property is often considered in ecological networks such
as plant–pollinator mutualism [39], because such nonrandom patterns often
strongly control the dynamics of ecological systems [40].

Modular Structure. The modular structure represents that the subsets of A nodes
(modules), in which nodes are strongly interconnected through B nodes, are
weakly connected to each other [41] (see Fig. 3.16). In other words, species
are divided into several clusters based on their metabolite compositions. This

www.it-ebooks.info

http://www.it-ebooks.info/

98 MODELING FOR EVOLVING BIOLOGICAL NETWORKS

Nested structureModular structure Radom structure
(Null model)

NestednessModularity
High Low High

FIGURE 3.16 Schematic diagram of nested structure and modular structure in bipartite
networks. This figure is based on Ref. [42].

structural property helps in understanding the coevolution of two objects. This
structure is investigated in a wide range of fields such as those pertaining to
social, ecological, and biological systems and are useful for clustering and
functional predictions.

We investigate the nestedness and modularity of metabolite (flavonoid) dis-
tributions. To measure the degrees of nested structure and modular structure
(i.e., nestedness N and modularity Q) of metabolite distributions, we employed
the BINMATNEST program [43] and the optimization algorithm proposed in
Ref. [41], respectively. The nestedness N ranges from perfect non-nestedness
(N = 0) to perfect nestedness (N = 1), and high modularity Q indicates a
strong modular structure. We also calculated N and Q from randomized net-
works generated by the null model 2 in Ref. [39] in order to demonstrate the
statistical significance of the structural properties. The statistical significance
is suitably evaluated because the null model 2 generates randomized networks
without the bias of heterogeneous connectivity.

Figure 3.17 shows the comparison between the nestedness N and modularity
Q of real data and those of the null model data for each family. As shown in

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Fab
ac

ea
e

Aste
ra

ce
ae

La
m

iac
ea

e

Rut
ac

ea
e

M
or

ac
ea

e

Ros
ac

ea
e

N
es

te
dn

es
s

N
N

real

null

0.5

0.6

0.7

0.8

0.9

Fab
ac

ea
e

Aste
ra

ce
ae

La
m

iac
ea

e

Rut
ac

ea
e

M
or

ac
ea

e

Ros
ac

ea
e

M
od

ul
ar

ity

Q
Q

real

null

(a) (b)

FIGURE 3.17 (a) Significantly high nestedness N and (b) modularity Q in metabolite dis-
tributions across plant species. The dark gray bars and the light gray bars correspond to real
values and null model values, respectively. N and Q obtained from the null model are averaged
over 100 realizations. All P-values for the difference are lower than 0.0001. The P-value is
derived using the Z-score defined as (xreal − x̄null)/SEnull, where xreal corresponds to real val-
ues (nestedness or modularity). x̄null and SEnull are the average value for the null model and its
standard error, respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

BIPARTITE RELATIONSHIP: A CASE STUDY OF METABOLITE DISTRIBUTION 99

Figure 3.17, N and Q of real data are significantly larger than that of the
null model, indicating that metabolite distributions also show nested structure
and modular structure in addition to heterogeneous connectivity, similar to
ecological networks and organizational networks. In addition, nestedness and
modularity are different structural properties as there is no correlation between
them (Pearson correlation coefficient, r = 0.345 with P-value, p = 0.503).

3.4.2 Bipartite Network Model

In the previous section, we showed the various structural properties of metabolite
distributions. Here, we speculate on the possible origins of these structural properties
using a simple model.

We consider two simple evolutionary mechanisms as follows.

(i) New flavonoids are generated by the variation of existing flavonoids. In evolu-
tionary history, species accordingly obtain new metabolic enzymes via evolu-
tionary events, and the metabolic enzymes synthesize new flavonoids through
the modification of existing flavonoids with substituent groups and functional
groups.

(ii) The flavonoid compositions of new species are inherited from those of ex-
isting (ancestral) species. New species are believed to emerge by mutation of
ancestral species and are thus similar to the ancestral species. Hence, flavonoid
compositions of the ancestral species might be inherited by new species. In
addition, independent of our model, a bipartite network model based on the
above inheritance (or copy) mechanism was proposed in Ref. [44] around the
same time, with the aim of describing the evolution of protein domain net-
works. Note that the linking mechanism in the procedure (ii) is asymmetric
with that in the procedure (i).

Considering the above two mechanisms, we propose a simple model with two
parameters, p and q, reproducing the heterogeneous distributions of flavonoids among
species.

Our model is defined by the following procedure:

(a) We set an initial species–flavonoid network represented as a complete bipartite
graph with n0 species and n0 flavonoids (Fig. 3.18a).

(b) Event I, which corresponds to the emergence of a new species, occurs with
probability p. An existing species is selected at random (Fig. 3.18b). A new
species emerges due to the mutation of randomly selected existing species, and
the flavonoids of the existing species are inherited by the new species as their
candidate flavonoids (Fig. 3.2c). Due to the divergence of the flavonoid com-
positions, the new species finally acquires flavonoids with equal probability
q for each of the candidates (Fig. 3.18d). However, if the new species has no
flavonoids then it is neglected (removed) in accordance with the observation

www.it-ebooks.info

http://www.it-ebooks.info/

100 MODELING FOR EVOLVING BIOLOGICAL NETWORKS

p

1−p

Species

Flavonoid

(Metabolite)

q

q

Event I

Event II

(a)

(b) (c)

(e) (f)

(d)

FIGURE 3.18 Schematic diagram of the model. Squares and circles represent the plant
species and flavonoids, respectively. (a) An initial species–flavonoid relationship (network)
with n0 = 2. (b–d) Event I: the emergence of a new species. The gray square represents a
randomly selected existing species. The black square represents a new species emerging due to
the duplication of existing species. The dashed lines indicate possible pairs of the new species
and flavonoids. (e, f) Event II: the emergence of a new flavonoid. The thick edge between gray
nodes corresponds to a randomly selected existing species–flavonoid pair. The black circle
represents a new flavonoid.

condition (species without flavonoids are not included in our dataset). In con-
trast to Event I, Event II corresponding to the emergence of a new flavonoid
occurs with probability 1 − p. A species–flavonoid pair is uniformly selected
at random (Fig. 3.18e). Then, the species receives a new flavonoid (Fig. 3.18f).

(c) The procedure (b) is repeated until the number of species and the number of
flavonoids are equivalent to S and M, respectively.
Our model has two parameters, p and q. The parameter p is estimated as

p = S

S + M
(3.33)

because p only controls the number of species and the number of flavonoids.
The estimation of q is described in the following section. This model does not
require parameter tunings.

Relation with “Rich-get-Richer” Mechanisms. The emergence of heterogeneous
(power–law) distributions in evolving systems might be caused by the “rich-
get-richer” or preferential mechanisms, according to which, the increase of a
statistic is proportional to the statistic itself [1,12]. Here, we discuss the “rich-
get-richer” mechanism of our model.

We first mention the number of flavonoids in a species nf . When Event II
occurs, nf increases. The number of flavonoids of species i, ni

f , increases when
a randomly selected species–flavonoid pair includes species i. Thus, species
with many flavonoids tend to be selected in such a case. As a result, such

www.it-ebooks.info

http://www.it-ebooks.info/

BIPARTITE RELATIONSHIP: A CASE STUDY OF METABOLITE DISTRIBUTION 101

species acquire more flavonoids, resulting in a “rich-get-richer” mechanism.
The origin of this preferential mechanism is similar to that of the mechanism in
the Dorogovtsev–Mendes–Samukhin (DMS) model [45]. However, our model
is essentially different from the DMS model because the DMS model does not
describe bipartite relationships.

This “rich-get-richer” mechanism is mathematically described as follows.
We consider the time evolution of ni

f . Let L(t) be the total number of species–

flavonoid pairs at time t; the probability that species i with ni
f flavonoids is

chosen is equivalent to ni
f /L(t) because the pair is randomly selected. In addi-

tion, Event II occurs with the probability 1 − p. Therefore, the time evolution
of ni

f is described as

d

dt
ni

f = (1 − p)
ni

f

L(t)
. (3.34)

Next, we focus on the time evolution of L(t). The number of pairs L(t)
increases in Events I and II. In the case of Event I, L(t) increases by q ×
L(t)/S(t), where S(t) is the number of species at time t, because the flavonoids
of the randomly selected existing species are inherited by the new species with
the probability q. It should be noted that the expected number of flavonoids of
randomly selected species is

∑S(t)
j=1 n

j
f /S(t) = L(t)/S(t). In the case of Event

II, L(t) increases by 1. The Events I and II occur with the probabilities p and
1 − p, respectively. Therefore, the time evolution of L(t) is expressed as

d

dt
L(t) = pq

L(t)

S(t)
+ (1 − p). (3.35)

Since S(t) = pt, the solution of this equation for the initial condition L(1) = L0
is

L(t) = 1 − p

1 − q
t +

(
L0 − 1 − p

1 − q

)
tq. (3.36)

Assuming a small L0 and t 1, since q < 1 is satisfied, the above equation is
approximated as

L(t) ≈ 1 − p

1 − q
t. (3.37)

This equation indicates that L(t) is approximately proportional to time t for a
large t and a relatively small q.

Using the above equation, we can estimate the parameter q as follows:

q = 1 − M

L
(3.38)

Substituting Equation 3.37 into Equation 3.34, we have

d

dt
ni

f ≈ (1 − q)
ni

f

t
, (3.39)

www.it-ebooks.info

http://www.it-ebooks.info/

102 MODELING FOR EVOLVING BIOLOGICAL NETWORKS

which suggests preferential mechanism, that is, the increase of ni
f is propor-

tional to ni
f .

From this equation, using the mean-field-based method [12], we immediately
obtain the power–law distribution of nf :

P(nf) ∼ n
−(2−q)/(1−q)
f . (3.40)

We next consider the number of shared species of flavonoid ns. When Event
I occurs, ns increases. The number of species shared by a flavonoid i, ni

s, might
increase when a randomly selected species has the flavonoid i. Thus, flavonoids
shared by many species tend to be selected in such a case. As a result, such
flavonoids are shared by more species, reflecting a “rich-get-richer” mechanism.
The origin of this preferential mechanism is analogous to that of the mechanism
in the duplication-divergence (DD) model [46]. However, our model is also
different from the DD model in that the DD model does not describe bipartite
relationships.

This “rich-get-richer” mechanism is mathematically explained as follows.
We consider the time evolution of ni

s. The probability that each flavonoid i is
shared by a new species is equivalent because the resulting new species obtains
the flavonoid i with the probability q when one of the ni

s species with flavonoid
i is randomly selected. In addition, Event I occurs with the probability p. Since
S(t) = pt, the time evolution of ni

s is described as

d

dt
ni

s = pq
ni

s

S(t)
= q

ni
s

t
, (3.41)

which indicates the preferential mechanism, that is, the increase of ni
s is pro-

portional to ni
s.

As in the case of nf , we immediately obtain the power–law distribution
of ns:

P(ns) ∼ n−(1+q)/q
s . (3.42)

Origin of Nested and Modular Structures. We could not derive the analytical solu-
tions of the nestedness and modularity in our model because of the complicated
definitions of these structural properties. Using our model, however, the for-
mation mechanisms of the structural properties in metabolite distributions are
described as follows.

The nested structure implies that a plant’s flavonoid composition is a subset
of the flavonoid compositions of other plants; its origin is explained using our
model as follows. In our model, metabolites of a new plant are inherited from
those of an ancestral plant because the new plant tends to be similar to the
ancestral plant with mutation. However, new plants obtain the metabolite part
due to divergence (elimination of interactions). As a result, the metabolites of
an offspring plant become a subset of those of their parent plant and hence result
in a nested structure.

www.it-ebooks.info

http://www.it-ebooks.info/

BIPARTITE RELATIONSHIP: A CASE STUDY OF METABOLITE DISTRIBUTION 103

The modular structure implies that plant species are divided into several
clusters in which they are strongly interconnected through common metabolites;
these clusters interact loosely. In simple terms, a modular structure is obtained
by the strong interconnections in the clusters and weak interactions among
the clusters. The emergence of weak and strong interactions is also described
by the inheritance and divergence of metabolite compositions. As mentioned
above, metabolite compositions of the new species are inherited from ancestral
species in our model. Hence, new species and ancestral species are connected
because of common metabolites; the interactions of this type correspond to
strong interconnections. Due to divergence, on the other hand, new species
indirectly connect to other species via the metabolites of ancestral species that
were not inherited by the new species; this results in weak interactions.

3.4.3 Comparison with Real Data

We estimated the parameters p and q from real data using Equations 3.33 and 3.38
and generated the corresponding model networks for comparison with real ones.

Degree Distribution. We compare the frequency distributions of the number of
flavonoids of a plant species nf and the number of species sharing a flavonoid
ns between our model and the real networks.

Figure 3.19 shows the degree distributions of metabolite distributions
(species–metabolite networks) (symbols) and the models (lines). Due to space
limitations, the degree distributions of only three metabolite distributions are
used as representative examples. We could observe the degree distributions of

100

10–1

10–2

10–3

100

100 101 102

100 101 102 100 101 102

100 101 102

10–1

10–2

10–3

10–4

100

10–1

10–2

10–3

100

10–1

10–2

10–3

P
(n

f)

P
(k

s
)

P
(k

F
)

100

10–1

10–2

10–3

P
(k

f)

P
(n

s
)

Real data
Our model
BC model

ns ns

100 101 102

ns

nf nf

100 101 102

100

10–1

10–2

10–3

P
(k

s
)

nf

(a) Fabaceae (b) Asteraceae (c) Lamiaceae

FIGURE 3.19 Heterogeneous degree distributions in metabolite distributions for plant
species (top column) and metabolites (flavonoids) (bottom column). The circles and lines
represent real data and models, respectively. The degree distributions of models are averaged
over 100 realizations.

www.it-ebooks.info

http://www.it-ebooks.info/

104 MODELING FOR EVOLVING BIOLOGICAL NETWORKS

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.95 0.96 0.97 0.98 0.99 1

P
re

di
ct

ed
 N

Observed N

Our model
Null model

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.65 0.7 0.75 0.8 0.85 0.9

P
re

di
ct

ed
 Q

Observed Q

(a) (b)

FIGURE 3.20 Comparison between the (a) nestedness N (b) and modularity Q of our model
and those of real networks. The dashed line represents the perfect agreement between predicted
values (N orQ) and observed ones. The nestedness and the modularity obtained from the models
are averaged over 100 realizations.

two types [P(nf) and P(ns), where nf and ns denote the degrees of nodes cor-
responding to plant species and metabolites (flavonoids), respectively] because
metabolite distributions are represented as bipartite graphs. In both the cases,
the degree distributions follow a power law with an exponential truncation and
the model-generated degree distributions are in good agreement with real ones.

Nestedness and Modularity. Next, we discuss the prediction of nestedness N and
modularity Q using our model. Figure 3.20 shows the comparison between the
N and Q values of the model and those of the real data. For comparison, we
also computed N and Q from the null model.

As shown in this figure, the prediction accuracy of our model is clearly higher
than that of the null model and the data from our model is in good agreement
with real data.

3.4.4 Related Model

The model proposed by Saavedra et al. [33] is a different type of bipartite network
model, called a bipartite cooperation (BC) model. The BC model is a nongrowth
model, in which the number of nodes is fixed. Thus, this model is not an evolutionary
model and is different from our model. In the BC model, interactions between nodes
are determined based on the traits (or properties) of nodes rather than evolutionary
mechanisms.

The BC model reproduces the structure of bipartite relationships in ecological and
social systems. However, with regard to metabolite distributions, the BC model shows
a lower prediction accuracy than our model (see Ref. [37] for details). In addition,
we partially observed the high prediction accuracy of our model rather than the BC
model in the case of ecological networks although the BC model is believed to be a
good model for ecological networks (see Ref. [47] for details).

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 105

However, our model (evolutionary model) does not contradict the BC model (non-
growth network model) because these models describe different mechanisms for the
formation of nonrandom structures and therefore provides additional insights into
the formation of bipartite networks. For example, the modularity of real ecological
networks is in good agreement with that of the BC model rather than that of our model
[48]. These two different models play an important role in the deeper understanding
of formation mechanisms of bipartite networks.

3.5 CONCLUSION

In this chapter, we introduced several evolving network models by focusing on bio-
logical networks. The model networks were compared with real data, and they were
found to be in good agreement with the real data in terms of structural properties. In
particular, the model mentioned in Section 3.2 reproduces several types of biological
networks such as gene regulatory networks and metabolic networks. The models in
Sections 3.3 and 3.4 do not require parameter tunings, which are necessary in most
existing models. Thus, it is easy to estimate the frequency of evolutionary events such
as gene duplication and divergences. Our models are expected to provide a platform
for the elucidation of formation mechanisms in biological networks. For instance,
metabolic networks are believed to shape-shift in response to environmental changes
[49,50], and the model in Section 3.3 explains the possible origin of structural differ-
ences with respect to growth temperatures (an environmental factor) [27].

In addition to this, our models also serve as a foundation for the prediction of
interactions between biomolecules, that is, “link prediction” [51]. It is believed that
real networks have several missing links, and the finding of such links is an important
challenge in various fields including biology. The statistical and machine-learning
techniques are often utilized in link prediction. Network models are particularly useful
because they estimate the probability of interactions between nodes.

We use the concepts of network models in biology as well as in society and ecology.
As mentioned in Section 3.4, our bipartite network model can also explain the structure
of ecological networks in addition to metabolite distributions. The models mentioned
in this chapter may be applicable in a wide range of fields.

REFERENCES

1. A.-L. Barabási, Z.N. Oltvai, Network biology: understanding the cell’s functional organi-
zation, Nat. Rev. Genet. 5, 101 (2004).

2. R. Albert, Scale-free networks in cell biology, J. Cell Sci. 118, 4947 (2005).

3. U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits,
Chapman & Hall/CRC, Florida, 2006.

4. S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Nets to the
Internet and WWW, Oxford University Press, Oxford, 2003.

5. Z.N. Oltvai, A.-L. Barabási, Life’s complexity pyramid, Science 298, 763 (2002).

www.it-ebooks.info

http://www.it-ebooks.info/

106 MODELING FOR EVOLVING BIOLOGICAL NETWORKS

6. B.Ø. Palsson, Systems Biology: Properties of Reconstructed Networks, Cambridge Uni-
versity Press, New York, 2006.

7. M. Kanehisa, S. Goto, M. Hattori, K.F. Aoki-Kinoshita, M. Itoh, S. Kawashima, T.
Katayama, M. Araki, M. Hirakawa, From genomics to chemical genomics: new devel-
opments in KEGG, Nucleic Acids Res. 34, D354 (2006).

8. http://www.yworks.com/products/yed/

9. L. Salwinski, C.S. Miller, A.J. Smith, F.K. Pettit, J.U. Bowie, D. Eisenberg, The Database
of Interacting Proteins: 2004 update, Nucleic Acids Res. 32, D449 (2004).

10. R. Albert, A.-L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys. 74,
47 (2002).

11. B. Bollobas, Random Graphs, Academic Press, London, 1985.

12. A.-L. Barabási, R. Albert, H. Jeong, Mean-field theory for scale-free random networks,
Physica A 272, 173 (1999).

13. E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.-L. Barabási, Hierarchical organi-
zation of modularity in metabolic networks, Science 297, 1551 (2002).

14. P. Holme, B.J. Kim, Growing scale-free networks with tunable clustering, Phys. Rev. E 65,
026107 (2002).

15. K. Takemoto, C. Oosawa, Evolving networks by merging cliques, Phys. Rev. E 72, 046116
(2005).

16. M.E.J. Newman Assortative mixing in networks, Phys. Rev. Lett. 89, 208701
(2002).

17. V.M. Eguı́luz, K. Klemm, Epidemic threshold in structured scale-free networks, Phys. Rev.
Lett. 89, 108701 (2002).

18. G. Bianconi, A.-L. Barabási, Competition and multiscaling in evolving networks, Euro-
phys. Lett. 54, 436 (2001).

19. S.H. Yook, H. Jeong, A.-L. Barabási, Y. Tu, Weighted evolving networks, Phys. Rev. Lett.
86, 5835 (2001).

20. A. Barrat, M. Barthélemy, A. Vespignani, Weighted evolving networks: coupling topology
and weight dynamics, Phys. Rev. Lett. 92, 228701 (2004).

21. R. Pastor-Satorras, A. Vázquez, A. Vespignani, Dynamical and correlation properties of
the internet, Phys. Rev. Lett. 87, 258701 (2001).

22. A. Barrat, R. Pastor-Satorras, Rate equation approach for correlations in growing network
models, Phys. Rev. E 71, 036127 (2005).

23. K. Takemoto, C. Oosawa, Modeling for evolving biological networks with scale-
free connectivity, hierarchical modularity, and disassortativity, Math. Biosci. 208, 454
(2007).

24. H. Salgado, S. Gama-Castro, A. Martı́nez-Antonio, E. Dı́az-Peredo, F. Sénchez-Solano,
M. Peralta-Gil, D. Garcia-Alonso, V. Jiménez-Jacinto, A. Santos-Zavaleta, C. Bonavides-
Martńez, J. Collado-Vides, RegulonDB (version 4.0): transcriptional regulation, operon
organization and growth conditions in Escherichia coli K-12, Nucleic Acids Res. 32, D303
(2004).

25. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.-L. Barabási, The large-scale organization
of metabolic networks, Nature 407, 651 (2000).

26. M. Arita, The metabolic world of Escherichia coli is not small, Proc. Natl. Acad. Sci.
U.S.A. 101, 1543 (2004).

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 107

27. K. Takemoto, T. Akutsu, Origin of structural difference in metabolic networks with respect
to temperature, BMC Syst. Biol. 2, 82 (2008).

28. J. Saramäki, K. Kaski, Scale-free networks generated by random walkers, Physica A 341,
80 (2004).

29. M.E.J. Newman, Power laws, Pareto distributions and Zipf’s law. Contemporary Phys. 46,
323 (2005).

30. B. Papp, B. Teusink, R.A. Notebaart, A critical view of metabolic network adaptations,
HFSP J. 3, 24 (2008).

31. R. Fani, M. Fondia, Origin and evolution of metabolic pathways, Phys. Life Rev. 6, 23
(2009).

32. M.A. Yıldırım, K.-I. Goh, M.E Cusick, A.-L. Barabási, M, Vidal, Drug-target network,
Nat. Biotech. 25, 1119 (2007).

33. S. Saavedra, F. Reed-Tsochas, B. Uzzi, A simple model of bipartite cooperation for eco-
logical and organizational networks, Nature 457, 463 (2009).

34. J. Gershenzon, T.J. Mabry, Secondary metabolites and the higher classification of an-
giosperms, Nord. J. Bot. 3, 5 (1983).

35. B.A. Bohm, Occurrence and Distribution of Flavonoids, Harwood Academic Publishers,
Amsterdam, 1998.

36. K. Takemoto, M. Arita, Heterogeneous distribution of metabolites across plant species,
Physica A 388, 2771 (2009).

37. K. Takemoto, Global architecture of metabolite distributions across species and its forma-
tion mechanisms, Biosystems 100, 8 (2010).

38. Y. Shinbo, Y. Nakamura, M. Altaf-Ul-Amin, H. Asahi, K. Kurokawa, K. Arita, K. Saito,
D. Ohta, D. Shibata, S. Kanaya, KNApSAcK: A Comprehensive Species–Metabolite Re-
lationship Database, Biotechnology in Agriculture and Forestry vol. 57, Springer-Verlag,
Berlin, 2006.

39. J. Bascompte, P. Jordano, C.J. Melián, J.M. Olesen, The nested assembly of plant-animal
mutualistic networks, Proc. Natl. Acad. Sci. U.S.A. 100, 9383 (2003).

40. U. Bastolla, M.A. Fortuna, A. Pascual-Garcı́a, A. Ferrera, B. Luque, J. Bascompte, The
architecture of mutualistic networks minimizes competition and increases biodiversity,
Nature 458, 1018 (2009).

41. R. Guimerá, L.A.N. Amaral, Functional cartography of complex metabolic networks, Na-
ture 433, 895 (2005).

42. E. Thébault, C. Fontaine, Stability of ecological communities and the architecture of mu-
tualistic and trophic networks, Science 329, 853 (2010).

43. M.A. Rodrı́guez-Gironés, L. Santamarı́a, A new algorithm to calculate the nestedness
temperature of presence-absence matrices, J. Biogeogr. 33, 924 (2006).

44. J.C. Nacher, T. Ochiai, M. Hayashida, T. Akutsu, A bipartite graph based model of protein
domain networks, Complex Sci. 4, 525 (2009).

45. S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Size-dependent degree distribution of
a scale-free growing network, Phys. Rev. E 63, 062101 (2001).

46. A. Vázquez, Growing network with local rules: Preferential attachment, clustering hierar-
chy, and degree correlations, Phys. Rev. E 67, 056104 (2003).

47. K. Takemoto, M. Arita, Nested structure acquired through simple evolutionary process, J.
Theor. Biol. 264, 782 (2010).

www.it-ebooks.info

http://www.it-ebooks.info/

108 MODELING FOR EVOLVING BIOLOGICAL NETWORKS

48. K. Takemoto, unpublished data.

49. K. Takemoto, J.C. Nacher, T. Akutsu, Correlation between structure and temperature in
prokaryotic metabolic networks, BMC Bioinformatics 8, 303 (2007).

50. M. Parter, N. Kashtan, U. Alon, Environmental variability and modularity of bacterial
metabolic networks, BMC Evol. Biol. 7, 169 (2007).

51. L. Lu, T. Zhou, Link prediction in complex networks: a survey, arXiv/1010.0725 (2010).

www.it-ebooks.info

http://www.it-ebooks.info/

4
MODULARITY CONFIGURATIONS IN
BIOLOGICAL NETWORKS WITH
EMBEDDED DYNAMICS

Enrico Capobianco, Antonella Travaglione,
and Elisabetta Marras

4.1 INTRODUCTION

4.1.1 Biological Networks and Computational Challenges

The huge interest in complex networks across many research areas has also found
application in biological studies, where associations between genes, proteins, and
metabolites deserve further investigation particularly due to the underlying regula-
tive or interactive dynamics. Here the proposed work addresses protein interactome
networks (PIN) [1] from an integrative dynamic perspective, and aims to establish a
better definition of their modular configurations.

There are currently reasons of concern in relation to the computational analysis
of PIN, and they mainly refer to three problems. First, there is a limited interactome
coverage [2] that depends on the organism under study [3] and on the available data-
generating methodologies (yeast two-hybrid, co-IP, text mining and literature mining,
DB curation, orthology, etc.). Consequently, data integration is often needed to ensure
a better data uncertainty control and validation quality.

Second, there is also limited measurement accuracy as a limiting factor, and refers
to the uncertainty inherent to both experimentally measured and predicted interactions
(due to various sources of errors, biases, etc.). For example, evidence was recently
provided [4] with regard to literature-curated interactome data about the necessity

Statistical and Machine Learning Approaches for Network Analysis, Edited by Matthias Dehmer and
Subhash C. Basak.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

109

www.it-ebooks.info

http://www.it-ebooks.info/

110 MODULARITY CONFIGURATIONS IN BIOLOGICAL NETWORKS

of careful quality control for reliable inference. Notably, scoring systems have been
proposed to assign reliability to the interactions, thus leading to common classification
into low- and high-confidence PIN.

Third, detecting modularity is a very complicated task that offers only approxi-
mate solutions. Various different principles and methods (see Ref. 5 for comparative
evaluations) can be applied for network partitioning, but without guarantee of achiev-
ing the best possible approximation quality due to the so-called “network resolution
limit” problem [6,7]. As the truly informative module sizes may not match the algo-
rithmically retrievable ones, we can observe suboptimal configurations, either sparse
(with a few dense modules) or highly redundant (with many small-to-intermediate
overlapping modules) maps.

As a result, such incompleteness and inaccuracy of representation calls for both
new inference methods and better use of the currently adopted ones. These are chal-
lenging tasks, further complicated by the fact that the available protein interaction map
consists of a mix of real interactions and false positives, and correspondingly non-
interactions and false negatives. Therefore, while such map represents static entities
subject to limitations and constraints, they actually refer to underlying associations
that dynamically change depending on experimental conditions, system perturbations,
and so on. Accordingly, a better control of the degree of uncertainty embedded in the
protein maps requires that differential network features might be considered together
with a variety of modular structures.

In order to control the uncertainty level, data integration is adopted in many systems
biology applications; for instance, in PIN applications the use of gene coexpression
and pathway information sources can complement the observed interactions. Another
common strategy involves the analysis of topological properties [8,9]. Further refine-
ment of interactome data can rely on similarity (dissimilarity) measures to allow for
comparative analysis of PIN, and for the assignment of confidence levels to each
interaction depending on biological and computational aspects.

4.1.2 Outline

The structure of this paper is as follows. We describe in Section 4.2 our methodological
approach in both general and particular aspects related to the PIN setting; then, we
present our results in Section 4.3; and finally, concluding remarks with a discussion
follows in Section 4.4.

4.2 METHODS

4.2.1 General Approach

Interactome filtering may involve a selection of interaction data in terms of biological
processes; as a result, a specific stratified interactome analysis could be performed.
The advantage of such data disaggregation that we call “PIN fragmentation” is that
the complexity levels of usually aggregated data would be avoided in favor of a

www.it-ebooks.info

http://www.it-ebooks.info/

METHODS 111

reduction of dimensionality. The loss of information inherent to the integrated data
may be balanced by the fact that the specific information layers that are needed may
be promptly used. Thus, signaling or cell cycle or other processes can be examined
once they have been retrieved, and can always be compared or combined, if needed.

Recent works [10–12] has inspired our approach. These authors compare topo-
logical characteristics of protein and metabolic filtered PIN from Escherichia coli
and Saccharomyces cerevisiae model organisms, while we look specifically at cell
cycle PIN data for this work, and plan to extend the fragmentation analysis in parallel
studies. We thus built a compilation of filtered PIN from the yeast reference datasets
of Reguly et al. [13], and used as a benchmark the literature-curated interactome
(LIT-Int) obtained from small-scale experiments. Based on the reference dataset (say,
rPIN) we applied a PIN fragmentation to extract subinteractomes specialized by cell
biological processes.

The focus on the cell cycle process has the following rationale. Starting from
the available fragmented PIN featuring cell cycle characteristics, data integration
determined a sequence of “affine” PIN in which dynamic features enter through
gene expression profiling and thus contribute to further differentiate subinteractomes
belonging to the same process. In particular, the yeast cell cycle study of de Lichten-
berg et al. [14] represents a precious experimental data source of characterized mRNA
transcript levels measured during their periodical variation by time-course expression
peaks.

Notably, building fragmented PIN by mapping such gene coexpression signatures
brings the advantage of exploring the cohesiveness of protein modules and assessing
the modular maps designed relatively to both intramodular and intermodular struc-
tures. We thus perform a more precise analysis of the constituent factors underlying
the modules, which we call “modularization drivers” associated with the method used
to retrieve the modules (module resolution driver), the specific biological process in-
volved (protein interaction driver), and the integrated gene expression dynamics (gene
expression driver).

4.2.2 PIN Fragmentation

In order to generate data endowed with high specificity and functional dependence
in biological terms, we turn to a methodology designed to extract ad hoc interactome
parts. In particular, PIN fragmentation represents the method to provide us with a
compilation of subinteractomes; each of them has special features related to the bio-
logical processes that are involved, and if we consider just one biological process at a
time, for instance, then we can end up with a series of networks that can be compar-
atively evaluated in their topological structure and organization. Notably, depending
on the biological process that is examined, particularly interesting relationships may
be present between the fragmented interactome parts, as the example reported below
shows.

Relatively to our main source or interactome dataset, rPIN, the application of the
fragmentation method delivered the following subinteractome list in relation to the
cell cycle process:

www.it-ebooks.info

http://www.it-ebooks.info/

112 MODULARITY CONFIGURATIONS IN BIOLOGICAL NETWORKS

• rPIN is the LIT-Int reference PIN.
• cPIN is the cell cycle PIN obtained from annotation of cell cycle proteins from

both MIPS [15] and SGD [16] database. We classify as “static” this subinterac-
tome, as we just refer to protein interactions.

• cePIN is a constrained cell cycle PIN built from a two-step procedure. Initially,
gene expression profiles were obtained from the experiments cited above and
designed to detect during the cell cycle phases the so-called “expression peaks”
(maximal expression levels achieved) in order to represent gene signatures. Then,
mapping such values to rPIN yields the corresponding “peak-to-peak” associated
proteins (i.e., only proteins with related gene expression peaks are considered).

• cePIN-1 is similar to the previous subinteractome but less constrained because
the constituent interactions depends on a peak signature associated with just one
interacting protein (the other interacting protein may represent any other cell
cycle protein regardless of the expression level). Thus, the previous cePIN is
nested by construction.

• cePIN-2 is another subinteractome more relaxed than cePIN-1 since now the
interacting proteins with peak signature can link to any other protein, also not
involved in cell cycle ones. Thus, cePIN-1 is included.

Each extracted subinteractome has a number of proteins, say “n,” and correspond-
ing interactions “i” that amount respectively to:

1. rPIN: n = 3289, i = 11333;

2. cPIN: n = 771, i = 2493;

3. cePIN: n = 190, i = 381;

4. cePIN-1: n = 444, i = 977;

5. cePIN-2: n = 1193, i = 2254.

The rationale behind such construction is that there exists substantial evidence
from the literature that gene coexpression and physically interacting proteins tend to
be correlated. Thus, as colocalization and coexpression correlate at the transcriptional
level, their integration is expected to increase the reliability of modules detected by
computational algorithms and further corroborate the protein modularity maps [17].
Evidence for interacting protein pairs in a complex that show mRNA coexpression is
for instance provided by Dezso et al. [18], and is also available from human interac-
tome experimental work [19] and tissue-specific interactome analysis [20].

Our first methodological step aims to try to identify the role of the described factors.
Since in the proposed PIN list different contributions from the “module drivers” may
be expected, we attempt to represent both cell cycle effects and gene co-expression
peak signatures within the modular maps retrieved by the chosen methods. A com-
parison can then be made between static maps of PIN modules (usually addressed
as “snapshots”), and refined maps featuring expression data recorded during the cell
cycle phases.

www.it-ebooks.info

http://www.it-ebooks.info/

METHODS 113

The second methodological step involves modularization, and the assessment of
the module quality and evaluation of the map structure are based on comparisons
between cePIN-2, cePIN-1, and cePIN maps, whose modules necessarily depend
on the adopted network partitioning methods. In summary, our PIN modularization
approach is constructed to reflect both static and dynamic aspects, and is conditioned
on particular modular architectures.

4.2.3 PIN Topology

A first interest in topological network properties is in its distributional properties in
relation to the connectivity inherent to the protein map. In general, a power law is
observed in a network when for the number of nodes of degree k and for suitable
chosen α, a proportionality to k−α holds. Thus, given a probability distribution p(k),
we have

p(k) ∝ k−α (4.1)

In Figure 4.1, we offer a view of the fragmented PIN, then fit power laws to its
extracted components, and finally report the computed exponents, which result to
be α = 3.5 for cPIN, α = 2.6 for cePIN-2, α = 2.97 for cePIN-1, and α = 2.16 for
cePIN.

FIGURE 4.1 Scatters of cell cycle PIN and fitted power laws. Maps appear with different
sparsity levels and the fitted power laws reflect the combined role of various drivers.

www.it-ebooks.info

http://www.it-ebooks.info/

114 MODULARITY CONFIGURATIONS IN BIOLOGICAL NETWORKS

4.2.3.1 Modularity by Communities
Modular structures characterize PIN [21] and can be retrieved by several methods and
algorithms inspired by different principles (see for a wide review and examples [22]).
Accordingly, different search strategies have been employed to achieve PIN optimal
modularity, such as deterministic (divisive and greedy algorithms) and stochastic
(random walks) approaches. In general, the suboptimal solutions found from such
algorithmic approximations receive further biological validation through multiple
annotations involving protein complexes, GO categories, and pathways.

Notably, the different module structures can be also characterized by topological
properties; accordingly, topological features can be used to analyze networks at var-
ious granularity (ranging from globally to locally). We applied two popular methods
and retrieved two kinds of module structures, communities and cores. The community
finding method works through the maximization of a Q-modularity function, and is
based on a greedy optimization algorithm [23]. This very popular procedure iteratively
merges module pairs originated by seeds and continues to expand by monitoring a
modularity index that keeps increasing until a gain is detected, otherwise it stops. The
resulting communities are nonoverlapping, but in our map representations we try to
bypass such limitation by inserting cross-linking relationships between communities
when they are found to exist.

Figure 4.2 reports the outcomes from Q-modularity maximization, with the typi-
cally cascading patterns from the algorithmic learning steps; in particular, the sudden
pattern drop occurs after that the maximal gain has been reached and no further max-
imal value can be reached for the optimization function. The latter is simply defined
as a difference between links belonging to modules in a network and links that are ex-
pected when a network of equivalent size but randomly placed vertices is considered,

FIGURE 4.2 Comparative modularity convergence.

www.it-ebooks.info

http://www.it-ebooks.info/

RESULTS 115

such that a nonmodular condition is represented. In particular, a network partition in N

modules with mi and mj linked by eij appears in the modularity function as follows:

Q =
∑

i

[
eii −

(∑
j

eij

)2]
(4.2)

In particular, links that connect nodes within a module i are compared with all links
from any other module j connected to module i. A good partition into modules leads
to Q ∼ 1, while random (i.e., poor modularity) would deliver Q ∼ 0, thus meaning
that the fraction of modular and randomized links is not significantly different. In
particular, a generally accepted rule is that values Q > 0.3 may already suggest the
presence of modular structure. Overall, modular partitions obtained by this procedure
show relatively dense intramodular links and sparse intermodular links, which reflects
the presence of few local maxima capturing the most relevant information about the
internal network organization.

4.2.3.2 Modularity by Cores
MCODE [24] is another well-known method that exploits network local density areas
to identify clusters supposed to match protein complexes. In particular, the depen-
dence between nodes is represented by structures called “cliques,” and a hierarchy of
modules of different clique size is obtained at the end.

A clique is a maximally connected structure, that is, a network in which every
pair of distinct node is connected by a link. MCODE starts its exploration from
locally dense regions from a clustering coefficient computed a given node, that is,
CCi = 2n

ki(ki−1) , where ki is the size of the neighborhood of node i, and n is the number
of edges in the neighborhood.

A k-core is delivered by the method based on the clique benchmark, and represents
a network of minimal degree k after that all the nodes with degree less than k have
been successively eliminated. As several groups are formed at each k, an internal
ranking through scores based on node weighting is obtained. The output for our PIN
list is reported in Table 4.2 and indicates various cores computed at different k values,
The relevance of each modules can finally be biologically validated against known
protein complexes.

4.3 RESULTS

4.3.1 Community Maps

The communities retrieved for each subnetwork are listed in Table 4.1, and
Figure 4.2 describes the comparative algorithmic performance through the maxi-
mal values achieved by Q for each PIN. Then, Figures 4.3–4.6 represent instead

TABLE 4.1 Detected Communities (Relatively Small Ones)

rPIN cPIN cePIN cePIN-1 cePIN-2

67 (48) 28 (22) 31 (13) 26 (17) 43 (30)

www.it-ebooks.info

http://www.it-ebooks.info/

116 MODULARITY CONFIGURATIONS IN BIOLOGICAL NETWORKS

FIGURE 4.3 Community maps: (a) cPIN and (b) cePIN-1. The thick arrows point out the
indicated hubs.

www.it-ebooks.info

http://www.it-ebooks.info/

RESULTS 117

FIGURE 4.4 Community maps: (a) cePIN and (b) cePIN-2.

www.it-ebooks.info

http://www.it-ebooks.info/

118 MODULARITY CONFIGURATIONS IN BIOLOGICAL NETWORKS

FIGURE 4.5 Best k-core cPIN.

examples of community maps computed for the relevant subnetworks, that is, cPIN,
cePIN, cePIN-1, and cePIN-2, respectively. A characterization for the module maps
is obtained by the cell cycle phases, that is, the S (synthesis, DNA replication) and
M (mitosis, chromosome separation) phases together with the remaining G1 and G2
interphases. For both cePIN-1 and cePIN the corresponding KEGG pathways have
also been reported as supplementary data (SD).

4.3.1.1 Analysis
The analysis of the maps has been pursued according to some simple rules aimed
to provide useful interpretation. As a first rule, compact maps have been formed
by postprocessing the retrieved communities. In particular, hub proteins have been
emphasized due to their relevant role in terms of network stability. Concerning their
definition, since a connectivity threshold for distinguishing a protein hub is required
but is not unique, after some tests we have retained useful hubs with at least 15
connected proteins for our purposes.

Thus, the resulting community maps are hub-centered, and allow for a coarse-
grained evaluation. We compared various hubs providing community characterization
with a balance between module cohesiveness and cross-links then validated through
annotation. The visualized communities show darker nodes representing the hub

www.it-ebooks.info

http://www.it-ebooks.info/

RESULTS 119

FIGURE 4.6 Best k-core intersection from cePIN, cePIN-1, and cePIN-2.

proteins, and thick links emphasizing “hub-hub” cross-connections, together with
lighter links connecting hubs to nonhub proteins. All the other links have been hidden
(examples with complete associations are reported in SD).

The comparative examination of the community maps suggests some remarks. In
Figure 4.3a the map obtained from cPIN with just one driver (interactions) delivers a
quite redundant map, and extra cell cycle related communities appear due to possible
algorithmic errors. In the other maps, it is crucial to check the contribution from
coexpression-induced dynamics. In particular, Figure 4.3b reports the cePIN-1 map;
only half of the previously shown communities in cPIN are left.

The SPB or spindle pole body complex is the microtubule organizing center in the
yeast cells, while the Cohesin complex is responsible for binding the sister chromatids
during synthesis through the G2 phase and into M phase. The CDC28 complexes
appear too, with the cdk or cyclin-dependent kinase that phosphorylates a variety of
target substrates, together with the APC or anaphase-promoting complex (cyclosome)
that promotes metaphase–anaphase transition by ubiquitinating its specific substrates
(such as mitotic cyclin and anaphase inhibitor), then subsequently degraded by the
proteasome.

One of the communities is characterized by both the SPB and the Cohesin,
while another linked community is characterized by the CDC28 complexes. Also,

www.it-ebooks.info

http://www.it-ebooks.info/

120 MODULARITY CONFIGURATIONS IN BIOLOGICAL NETWORKS

communication between the latter complexes and the APC-characterized community
occurs in hub–hub style between cdc28 and clb2 with cdc20, and also in non hub–hub
style through the hub cln2 protein. In particular, clb2 is a B-type cyclin that activates
cdc28 to promote the transition from G2 to M phases, and then its degradation is
activated by the APC/Cdc20 to promote mitotic exit [25].

Then, the hub cdc28 links to SPB [26] and with reference to the same community
pair, the hub cdc5 that is involved in regulation of sister chromatid separation [27]
interacts with the nonhub scc1 cohesin protein. Finally, the hub sth1 protein, which
is a component of the RSC or chromatin remodeling complex associating the cohesin
with centromeres and chromosome arms [28], also interacts with the nonhub scc1
cohesin protein.

The KEGG pathway map reported in the SD (KEGGSDf1.jpg file) localizes
(marked by circles) especially the APC closeness to cdc20, and the Cohesin con-
nection to CDC28. In terms of phases, there appears a mix of them involving G1,
G2/M, and S. In particular, cdc20 in G2/M phase justifies the hub–hub cross-links
between APC and CDC28. Then, the G1 and S specificity of both the SPB and Cohesin
complexes comes also from cln2, which is linked to APC too.

By looking at Figure 4.4a, the first remark is for the G1 phase that strongly char-
acterizes the cePIN community map. A community is characterized by both CDC28
and SPB, with the latter also sharing a community with the Cohesin complex. The two
main modifications that can be observed refer to the hub cdc20 that becomes a nonhub
protein, and APC (activated by cdc20) that disappears (i.e., due to inactivated cdk in
S/M phases that allows the cell to exit from mitosis). The strong G1-characterization
can justify the absence of the link between APC and cdc20 as the latter acts in M and
not G1 phase where it acts with another protein. As both Cohesin and SPB remain,
the presence of the latter in G1 is possibly justified by the SPB duplication during this
phase (see Refs. 29,30).

Notably, the cePIN modularity map appears reduced, and highly G1-specific. As
the hub proteins have been found in just two communities, a very localized map results
from the highest possible influence of peak coexpression signatures. In SD (KEG-
GSDf2.jpg and KEGGSDf3.jpg files), the associated KEGG pathways are reported
for the two main communities.

The examination of cePIN-2 in Figure 4.4b reveals a map significantly denser than
before. Quite clearly, the dimensions of each PIN are different, but it is important to
underline the following aspects. This final transition naturally allows for introduc-
ing extra communities that are not related to the cell cycle, for instance, mediator,
spliceasome, ER to Golgi transport vesicle, TFIIC complexes. Thus, a redundancy of
communities appears compared to cePIN-1, as it was expected from the introduction
of non cell cycle proteins. In terms of phases, G1 and S are both present, but with
lesser characterization than before.

Overall, the community maps reflect quite well the co-expression dynamics, and in
particular identify for cePIN a phase-specific modularization due to peak signatures.
When relaxing the constraint of peak–peak protein interaction, the distinct impact of
biological process on modularization emerges, which appears from cePIN-1. Then,
when all proteins are considered as in cePIN-2, the community map substantially

www.it-ebooks.info

http://www.it-ebooks.info/

RESULTS 121

TABLE 4.2 Number of MCODE-Detected k-Cores at k Ranging Between Minimum of
2 and Maximum of 13 Across PIN

rPIN cPIN cePIN cePIN-1 cePIN-2

2-core 85 2-core 33 2-core 7 2-core 6 2-core 13
3-core 39 3-core 18 3-core 2 3-core 2 3-core 4
4-core 26 4-core 11 4-core 1 4-core 2
5-core 12 5-core 7
6-core 12 6-core 5
7-core 8 7-core 4
8-core 6 8-core 4
9-core 5 9-core 3
10-core 3 10-core 2
11-core 1 11–13-core 1

Number of MCODE-detected k-cores are given in boldface.

diversifies from strictly cell cycle based modules. Modularity is thus shaped by the
drivers and the dynamics characterized accordingly.

4.3.2 Core Structures

The implementation of MCODE requires that some parameters are set in order to
compute the network-scoring values. For instance, we set degree cutoff = 2 and node
score cutoff = 0.2, and then proceeded by fixing other values, such as haircut = true,
fluff = false; k-Core = 2; max. depth from seed = 100. The list of the retrieved k-
cores has been reported in Table 4.2. We have then comparatively evaluated the results
based on these k-cores, and reported them in Figures 4.4–4.6.

We looked at k-core modularity according to two different strategies. First, we have
considered the most important structure provided by the method, and thus the best
k-cores for each PIN. In particular, the “best k-core intersection” has been identified
and targeted. The best k-core of cPIN has been reported apart in Figure 4.4 as it
differentiates from the other cases in terms of data sources. Since the best k-cores
(Fig. 4.5) represent modules with the highest scores, they can be considered locally
optimal at the network scale. When annotation is done, the best cePIN k-core indicates
a little module with highly coexpressed genes, while the proteins address the MCM
complex involved in initiation and regulation of DNA replication. Also the best cePIN-
2 k-core includes the latter complex, but through a larger module annotating for the
prereplicative complex. Finally, the best cePIN-1 k-core results the most structured
and extended one.

We observe the presence of an area of intersection that involves the whole cePIN
core, and appears totally included by the other two structures. The most structured
k-core with regard to cell cycle belongs to cePIN-1, and is also determined by co-
expression. When we relax the requirement that all proteins refer to the cell cycle, as
with cePIN-2, then the best k-core structure reduces drastically and converges to that

www.it-ebooks.info

http://www.it-ebooks.info/

122 MODULARITY CONFIGURATIONS IN BIOLOGICAL NETWORKS

FIGURE 4.7 Best k-cores and innermost k-cores.

observed for cePIN by corresponding to the bottom-left region of the cePIN-1 k-core
(except for a few newly established associations).

Second, considering as in Figure 4.6 the whole-layered coreness structure requires
that for each PIN the innermost or most densely connected core is computed, which
equivalently requires the exploration of the sequence of cores at all k, and including
therefore, the best k-core. In some cases, as for cePIN-1, we observed a convergence
between the best and the innermost k-cores, although the same convergence was not
observed in the other two cases. The annotation is reported for the marked regions
defining cores, and an interesting aspect regards the presence of a module with dotted
links between nodes that reports checkpoints of the cell cycle through the cyclins.

The analysis of Figure 4.7 involves envelopes to visualize different cores belonging
to the various PIN, and distinguish between the best and the innermost k-cores at
varying k. Then, all characterizing phases have been indicated for each k-core. It
results that the cePIN is strongly G2/M characterized (particularly through the best k-
core) and presents an S-specific module, while cePIN-1 is strongly G1-characterized
(and marginally G2/M-characterized too), and cePIN-2 is similar to cePIN-1 but less
characterized.

We stress the fact that both strategies consider exclusively the inherent coreness
structure detected by MCODE, but exclude other possible structures embedded at
different resolutions [31]. In particular, we have emphasized how the cohesiveness

www.it-ebooks.info

http://www.it-ebooks.info/

DISCUSSION AND CONCLUDING REMARKS 123

of cores depends by the module drivers, and have evaluated the extent by which they
contribute to form and differentiate cores and communities in each PIN. Overall,
the clique-based modular organization is influenced by both drivers. The effect of
accounting for their simultaneous presence, as in cePIN, instead of considering them
more separately, is that more compact protein cores are found as expected.

4.3.3 On Network Entropy

The concept of network entropy is interesting for several reasons (see the review and
developments presented extensively in Ref. [32] and also including characterizations
in biology). Entropy as a measure of uncertainty can characterize PIN at both global
and local levels. In particular, when local dynamics are investigated through modules,
entropy can be used to corroborate the reliability of connectivity maps that are derived
from modules. This strategy is pursued in our work in relation with the modular
structure already extracted, that is, cores and communities.

Estimating entropies from finite samples remains in general a complicated task
due to statistical fluctuations, and this limitation holds also for sampled networks.
In the limit of sample size, when steady-state conditions are achieved, the Shannon
entropy associated with the network distribution p(k) is given by

Es = −
∞∑

k=1

p(k) lnp(k) (4.3)

The same formula has been applied in this work to approximately investigate the
uncertainty levels referred to cores and communities computed over the cell cycle
related subinteractomes. As a result, Figures 4.8–4.10 have been generated. As a first
observation, communities are larger modules compared to cores, and thus show in
general bigger values of the estimated entropy. Protein hubs are largely responsible
for the latter values, as it appears from the top plots in the first two figures (the last
one has a long list of hubs that we report apart).

Notably, when the number of nodes is considered in the X axis (see bottom plots),
we observe that cores shift toward the origin (i.e., relatively smaller cores for given
entropy levels) the more the cell cycle effects are relaxed. This means that the cell
cycle dynamics may be monitored by measuring entropy in relation to the module
sizes, and what we may observe reflects the fact that random effects play a major role
under relaxed conditions.

4.4 DISCUSSION AND CONCLUDING REMARKS

In the present study, we observed that the consideration of coexpression dynamics
enables a strong localization power in PIN that reinforces module detection and char-
acterizes phase-specific modules. We also found that the analysis centered on phases
annotated in cores and communities reveals a certain convergence between the var-
ious PIN. Even if cores do not show the strong G1 characterization in cePIN that is

www.it-ebooks.info

http://www.it-ebooks.info/

124 MODULARITY CONFIGURATIONS IN BIOLOGICAL NETWORKS

FIGURE 4.8 cePIN entropies with hubs emphasized for both (a) cores and communities and
(b) sorted by size.

observed with communities, the module annotation quality relatively to the matched
complexes depends necessarily on the different resolutions allowed by the methods.
Thus, the main driver of modularization is resolution-dependent, as expected.

The proposed approach of PIN fragmentation offers the possibility of looking at
a compilation of PIN selected according to various criteria, for instance cell cycle

www.it-ebooks.info

http://www.it-ebooks.info/

DISCUSSION AND CONCLUDING REMARKS 125

FIGURE 4.9 cePIN1 entropies with hubs emphasized for (a) both cores and communities
and (b) sorted by size.

specificity. An advantage is that comparative evaluations with regard to both general
topological features and modularity can refer to multiple PIN referred to a common
source. Thus, our study has referred to what we defined an “affine” PIN list, which
opened the possibility to explore PIN dynamical aspects. Due to the consideration
of time-course experiments and their recorded gene expression peak signatures, we
could center the rest of the analysis on modularity with reference to the cell cycle role
in determining the “interaction driver,” and the integrated gene measurements role in
determining the “expression driver.”

www.it-ebooks.info

http://www.it-ebooks.info/

126 MODULARITY CONFIGURATIONS IN BIOLOGICAL NETWORKS

FIGURE 4.10 cePIN2 entropies with hubs emphasized for both (a) cores and communities
and (b) sorted by size.

Modularization has been mainly investigated relatively to clique-based methods.
The comparison of community maps offered a coarse-grained analysis useful to ver-
ify what complexes are matched by modules and up to what extent, together with
the involved pathways. Furthermore, a module characterization by phases can help

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 127

monitoring the retrieved communities under different dynamic conditions. Then, the
hierarchical fine-grained analysis obtained by comparing best and innermost k-cores
was useful to point out the role that both module drivers may play at intramodular
resolutions.

We have emphasized the major variation in the community maps by concentrating
the analysis on hub proteins, thus reducing the dimensionality and complexity of
modularity maps, and then validating at the protein pathway level the established
community links. An increased phase localization power within the protein maps is
observed when peak signatures are considered. Especially the modularization detected
through k-cores tends to concentrate due to peak signature influence and intersection
between both best and innermost hierarchical structures.

Two final notes concern a specific comment and a more general consideration. The
modularization induced by the employed methods remains conditioned by the differ-
ent resolutions that they allow to uncover. Depending on the network, differentiated
modularity can be observed and maps are revealed according to the combined role of
process-driven interactions and coexpression dynamics. In general, we believe that
the development of differential network modularization approaches for examining
cellular systems may be useful for inferring the complexities that typically character-
ize high-dimensional and heterogeneous biological data. In particular, the proposed
approach for PIN could be extended to biological contexts where a crucial goal is
establishing a role for biological processes involved in disease.

ACKNOWLEDGMENT

The authors thank Sardegna Ricerche for support.

SUPPORTING INFORMATION

List of annotation tables
GO-comm-annotation.doc, GO-core-annotation.doc, Core-phase-annotation.xls,
Comm-phase-annotation.xls.

Figures:
cePIN1-hdp.jpg, cePIN2-hdp.jpg, cePIN2-hdp-redEd.jpg, cePIN1-hdp-redEd.jpg,

KEGGSDf1.jpg, KEGGSDf2.jpg, KEGGSDf3.jpg.

REFERENCES

1. M. Vidal, Interactome modeling, FEBS Lett. 579, 1834–1838 (2005).

2. G.T. Hart, A.K. Ramani, E.M. Marcotte, How complete are current yeast and human protein
interaction networks? Gen. Biol. 7(11), 120 (2006).

www.it-ebooks.info

http://www.it-ebooks.info/

128 MODULARITY CONFIGURATIONS IN BIOLOGICAL NETWORKS

3. C. von Mering et al., Comparative assessment of large-scale data sets of protein-protein
interactions. Nature 417, 399–401 (2002).

4. M.E. Cusick, et al., Literature-curated protein interaction datasets, Nat. Meth. 6, 39–46
(2009), doi:10.1038/nmeth.1284.

5. S. Brohee, J. van Helden, Evaluation of clustering algorithms for protein–protein interac-
tion networks, BMC Bioinform. 7(488), 1–19 (2006).

6. S. Fortunato, M. Barthelemy, Resolution limit in community detection. PNAS 104, 36–41
(2007).

7. M. Roswall, C.T. Bergstrom, An information-theoretic framework for resolving commu-
nity structure in complex networks. PNAS 104(18), 7327–7331 (2007).

8. A. Clauset, C.R. Shalizi, M.E.J. Newman, Power–law distributions in empirical data. SIAM
Rev. 51(4), 661–703 (2009).

9. L.dF. Costa, F.A. Rodrigues, G. Travieso, P.R. Villas Boas, Characterization of complex
networks: a survey of measurements. Adv. Phys. 56, 167–242 (2007).

10. P. Durek, D. Walther, The integrated analysis of metabolic and protein interaction networks
reveals novel molecular organization principles. BMC Syst. Biol. 2, 100 (2008).

11. C. Huthmacher, C. Gille, H.G. Holzhütter, A computational analysis of protein interac-
tions in metabolic networks reveals novel enzyme pairs potentially involved in metabolic
channeling. J. Theor. Biol. 252(3), 456–464 (2008).

12. C. Huthmacher, C. Gille, H.G. Holzhütter, Computational analysis of protein–protein in-
teractions in metabolic networks of E. coli and yeast. Genome Inform. 18, 162–172 (2007).

13. T. Reguly, et al., Comprehensive curation and analysis of global interaction networks in
Saccharomyces cerevisiae, J. Biol. 5, 11 (2006).

14. U. de Lichtenberg, L.J. Jensen, S. Brunak, P. Bork, Dynamic complex formation during
the yeast cell cycle, Science 307, 724–727 (2005).

15. http://mips.helmholtz-muenchen.de/genre/proj/yeast/

16. http://www.yeastgenome.org/

17. I.A. Maraziotis, K. Dimitrakopoulou, A. Bezerianos, An in silico method for detecting
overlapping functional modules from composite biological networks. BMC Syst. Biol.
2(93), (2008), doi:10.1186/1752-0509-2-93.

18. Z. Dezso, Z.N. Oltvai, A.L. Barabasi, Bioinformatics analysis of experimentally deter-
mined protein complexes in the yeast Saccharomyces cerevisiae. Gen. Res. 13, 2450–2454
(2003).

19. J.F. Rual, et al., Towards a proteome-scale map of the human protein–protein interaction
network. Nature 437, 1173–1178 (2005).

20. P.V. Missiuro, et al., Information flow analysis of interactome networks. PLos Computat.
Biol. 5(4), e1000350 (2009).

21. A.C. Gavin, Proteome survey reveals modularity of the yeast cell machinery. Nature 440,
631–636 (2006).

22. A. Clauset, Finding local community structure in networks. Phys. Rev. E 72, 026132
(2005).

23. M.E.J. Newman, M. Girvan, Finding and evaluating community structure in networks.
Phys. Rev. E 69, 026113 (2004).

24. G.D. Bader, W.V. Hogue, An automated method for finding molecular complexes in large
protein interaction networks, BMC Bioinform. 4(2), 1–27 (2003).

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 129

25. D.O. Morgan, Regulation of the APC and the exit from mitosis. Nat. Cell Biol. 1, E47–E53
(1999), doi:10.1038/10039.

26. S. Jaspersen, et al., Cdc28/Cdk1 regulates spindle pole body duplication through phospho-
rylation of Spc42 and Mps1. Develop. Cell 7(2), 263–274 (2004).

27. G. Alexandru, et al., Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase
regulates sister chromatid separation in yeast, Cell 105(4), 459–472 (2001).

28. B. Wilson, et al., The RSC chromatin remodeling complex bears an essential fungal-specific
protein module with broad functional roles. Genetics 172, 795–809 (2006).

29. S. Uzawa, Spindle pole body duplication in fission yeast occurs at the G1/S boundary but
maturation is blocked until exit from S by an event downstream of Cdc10+. MBoC 15(12),
5219–5230 (2004).

30. L. Vardy, T. Toda, The fission yeast gamma-tubulin complex is required in G(1) phase and
is a component of the spindle assembly checkpoint. EMBO J. 19(22), 6098–6111 (2000).

31. E. Marras, E. Travaglione, E. Capobianco, Sub-modular resolution analysis by network
mixture models. Statist. Appl. Genet. Mol. Biol. 9(1), 19 (2010).

32. M. Dehmer, A. Mowshowitz, A history of graph entropy measures. Inform. Sci. 181, 57–78
(2011).

33. A.L. Barabasi, R. Albert, Emergence of scaling in random networks, Science 286, 509–512
(1999).

34. R.J. Cho, et al., A genome-wide transcriptional analysis of the mitotic cell cycle, Mol. Cell
2, 65–73 (1998).

35. J.D. Han, et al., Evidence for dynamically organized modularity in the yeast protein–protein
interaction network. Nature 430, 88–93 (2004).

36. P.T. Spellman, et al., Comprehensive identification of cell cycle-regulated genes of the
yeast Saccharomyces cerevisiae by microarray hybridization, Mol. Biol. Cell, 9(12),
3273–3297 (1998).

www.it-ebooks.info

http://www.it-ebooks.info/

5
INFLUENCE OF STATISTICAL
ESTIMATORS ON THE LARGE-SCALE
CAUSAL INFERENCE OF
REGULATORY NETWORKS

Ricardo de Matos Simoes and Frank Emmert-Streib

5.1 INTRODUCTION

The inference of gene regulatory networks aims to unveil the causal structure of the
relations among genes in a cellular system from gene expression data [1–4]. Gene
regulatory networks (GRNs) allow to organize genes according to their gene expres-
sion dependency structure and aim to complement the understanding of the molecular
structures and processes in complex organismal cellular systems. The vast amount
of gene regulatory network inference methods that are being developed are gaining
more and more popularity due to the astonishing increase of high-throughput dataset
generation. The challenge of the future is the development of novel statistical meth-
ods to benefit from present and new emerging mass data [5,6], for example, from
microarray, Chip–Chip [7], Chip–seq, proteomics mass spectrometry, protein arrays,
and RNA–seq. Due to the large amount of available samples and cost efficiency, DNA
microarrays are still the state-of-the-art data source for gene regulatory network in-
ference. For example, one of the largest data repository of such high-throughput
gene expression data is the GEO database [8] that provides a large range of obser-
vational [9,10] and experimental gene expression data. Such large-scale datasets for
different organisms, perturbation and disease conditions, enable system-wide studies
of species, and phenotype-specific gene regulatory networks.

Statistical and Machine Learning Approaches for Network Analysis, Edited by Matthias Dehmer and
Subhash C. Basak.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

131

www.it-ebooks.info

http://www.it-ebooks.info/

132 INFLUENCE OF STATISTICAL ESTIMATORS ON THE LARGE-SCALE

The edges in gene regulatory networks represent physical interactions between
genes, intermediates, and their products. These can be genes regulated by the same
transcription factor (coexpression) and physical interactions from protein complexes,
metabolic and signaling pathways. For expression data, inferred interactions have been
observed to preferably indicate transcription regulation in Escherichia coli [11] but
can also correspond to other types of molecular interactions. Many current approaches
for gene regulatory network inference result in networks with a high edge density.
This leads to difficulties in elucidating the biological relevance and importance of the
individual edges. Instead, a network inferred with C3NET is very sparse and represents
the core of a gene regulatory network considering only the gene pairs with strongest
expression dependencies [12]. The inference of sparse gene regulatory networks is
therefore a promising approach to reduce the overall complexity by considering only
causal dependencies with the highest signal [13,14].

There are many gene regulatory network inference methods that are based on esti-
mates of mutual information values. Methods for network inference based on mutual
information are called relevance-based gene regulatory network inference methods.
The first method based on mutual information for GRN inference was introduced by
Ref. [15]. Mutual information is a measure of the nonlinear correlation between two
random variables (i.e., two genes), for example, estimated from the (individual) and
joint entropy of two random variables.

A variety of different mutual information estimators were developed in order to
obtain accurate estimates for different assumptions regarding the characteristics of the
underlying data. In Ref. [16] mutual information-based gene regulatory network infer-
ence algorithms were evaluated for different mutual information estimators, demon-
strating that the choice of the MI estimator influences the inference performance for a
given GRN approach. We address the question as to what extent the inference perfor-
mance of the C3NET algorithm is affected so as to determine which estimator is the
most beneficial in terms of its inference performance. In addition, we also employ lo-
cal network-based measures to study the inference performance for edges connected
to genes with a high degree and edges from linearly connected genes.

In the first part of this chapter, we describe the C3NET algorithm [12] for the
inference of gene regulatory networks. In the second part, we present four common
mutual information estimators, an ensemble approach for global inference perfor-
mance measure and local measures, investigating the influence of the estimators on
the networks inferred by C3NET. In the third part, we present numerical results for in
silico gene expression datasets generated for three Erdös–Rényi networks for various
sample sizes.

5.2 METHODS

5.2.1 C3NET

5.2.1.1 C3NET (Conservative Causal Core)
C3NET consists of three main steps [12]. The first step is for estimating mutual infor-
mation for all gene pairs. In the second step, the most significant link for each gene is

www.it-ebooks.info

http://www.it-ebooks.info/

METHODS 133

1

2

3

4

5

6

7

8

1

3

2

4

7

8

5

6

Max MI geneGene

FIGURE 5.1 Principle working mechanism of C3NET. The MI value between gene 7 and 5
(dashed) is not significant.

selected. In the third step nonsignificant links, according to a chosen significance level
α, between gene pairs are eliminated. The inferred link in a C3NET gene regulatory
network correspond to the highest MI value among the neighbor edges for each gene.
This implies that the highest possible number of edges that can be inferred by C3NET
is equal to the number of genes under consideration. This number can decrease for
several reasons. For example, when two genes have the same edge with maximum
MI value. In this case, the same edge would be chosen by both genes to be included
in the network. However, if an edge is already present another inclusion does not lead
to an additional edge. Another case corresponds to the situation when a gene does
not have significant edges at all. In this case, apparently, no edge can be included in
the network. Since C3NET employs MI values as test statistics among genes, there is
no directional information that can be inferred thereof. Hence, the resulting network
is undirected and unweighted. Figure 5.1 shows the principle working mechanism of
C3NET. The maximum mutual information value between gene 7 and 5 (dashed line)
is not significant. All other genes have significant MI values. This results in a total
of 7 edges in the inferred network. As one can see, the structure enabled from this
can assume an arbitrary complexity and is not limited to simple connections among
genes. The reason for this is that the selection of genes (left-hand side) is directed,
whereas the final network (right-hand side) is an undirected network. For a more
detailed technical explanation of C3NET, the reader is referred to Ref. [12].

In contrast, common mutual information-based gene regulatory network inference
approaches RN [17], ARACNE [18], or CLR eliminate nonsignificant links for all
possible gene pairs. This leads to more extensive computational effort and is often
circumvented by applying arbitrarily chosen fixed significance thresholds. However,
the C3NET approach allows to infer a gene regulatory network without any predefined
threshold for the significance of the mutual information.

www.it-ebooks.info

http://www.it-ebooks.info/

134 INFLUENCE OF STATISTICAL ESTIMATORS ON THE LARGE-SCALE

5.2.2 Estimating Mutual Information

In this chapter, we study the influence of the statistical MI estimator of mutual infor-
mation values on the inference of regulatory networks. We investigate four different
types of estimators that are based on the so-called histogram approach. In the first
step, the expression values of two genes are discretized into defined intervals denoted
as bins. Mutual information is a measure for the nonlinear dependence between two
random variables. Mutual information is defined by the joint probability P(X, Y) of
two random variables X and Y [19]. We compute mutual information by

I(X, Y) =
∑∑

P(X = xi, Y = yi) · log
P(X = xi, Y = yj)

P(X = xi) · P(Y = yi)
(5.1)

I(X, Y) is always ≥0 and we use base 2 for the logarithm. Mutual information can also
be calculated from the marginal and joint entropy measures of the random variables
X and Y :

I(X, Y) = H(X) + H(Y) − H(X, Y) (5.2)

The marginal entropy for a random variable X is defined by

H(X) =
∑

P(X = xi) · log(P(X = xi)) (5.3)

The joint entropy H(X, Y) is defined by

H(X, Y) =
∑
i,j

P(X = xi, Y = yi) · log(P(X = xi, Y = yi)) (5.4)

In the following, we give a numeral example how the mutual information is com-
puted using the empirical MI estimator for an artificial expression profile for two
genes. As example, we generated a linearly dependent expression profile for two
genes (Fig. 5.2).

We use three different discretization methods. The first, equal frequency method
requires the same number of values in each bin. The second, equal width method
defines the interval for each bin with the same size and the third, global equal width
method is similar to equal width. Here, the intervals are defined for both random
variables simultaneously, rather than separately for each random variable. We use
k-proportional interval discretization method [20] that defines the number of bins in
dependency of the sample size by

√
N. In Table 5.1, we use the global equal with the

method to discretized the expression profile for two genes. From the discretized values
the count frequencies define the empirical joint probability for each value occurring
in the defined intervals can be described for gene A and gene B by the joint probability
matrix P(x, y) (Table 5.2).

www.it-ebooks.info

http://www.it-ebooks.info/

METHODS 135

4.03.53.02.52.01.51.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Gene A

G
en

e
B

FIGURE 5.2 Example for correlated gene expression for two genes (10 samples). The ex-
pression values for gene A are sampled from a normal distribution with μ = 3 and σ = 1 and
the expression values for gene B are defined by gene A with an additional noise ε sampled
from a normal distribution with μ = 0 and σ = 1.

The marginal entropies for gene A and gene B are calculated using Equation 5.3:

H(GA) = −
((

2

10
· log

2

10

)
+

(
4

10
· log

4

10

)
· 2

)
= 1.52 bit

H(GB) = −
((

2

10
· log

2

10

)
+

(
4

10
· log

4

10

)
· 2

)
= 1.52 bit

From the discretized expression profiles, the joint probability for each defined bin
is empirically computed from the observed frequencies for gene A and gene B:

TABLE 5.1 Continuous and Discretized Gene Expression Profile of Gene A and Gene B

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Continuous
Gene A 3.31 1.03 3.75 3.52 2.25 3.31 3.66 4.10 1.27 4.34
Gene B 1.02 1.05 2.26 2.72 0.37 3.08 2.32 1.02 0.21 2.98

Discrete
Gene A 3 1 3 3 2 3 3 3 1 3
Gene B 1 1 2 2 1 3 2 1 1 3

The expression values are grouped in a total of 3 bins (global equal width).

www.it-ebooks.info

http://www.it-ebooks.info/

136 INFLUENCE OF STATISTICAL ESTIMATORS ON THE LARGE-SCALE

TABLE 5.2 Empirical Joint Probability Matrix is
Obtained from the Joint Count Frequencies of the Two
Expression Profiles for Each Bin

Bins B1 B2 B3

B1 2/10 1/10 1/10
B2 1/10 0 1/10
B3 1/10 1/10 2/10

using Equation 5.4 the joint entropy is then computed by

H(GA, GB) = −
((

1

10
· log

1

10

)
· 6 +

(
2

10
· log

2

10

)
· 2

)
= 2.92 bit

Hence, we obtain the following Mutual information:

I(GA, GB) = H(GA) + H(GB) − H(GA, GB) = 0.12 bit

We describe four different strategies for estimating mutual information for a dis-
cretized model. The simplest estimator is the empirical estimator that assumes normal-
ity for the values that fall in each bin. However, the main problem with this approach is
that the values are often nonuniform distributed among the bins that lead to a skewed
estimate of mutual information. A variety of approaches were developed to account
for the induced bias that range from correcting the estimate by a constant factor or
using a multivariate distribution to model the extend of missing information. In the
following, we show four different mutual information estimators that are based on a
discretized model. Note that the formulas for the shown estimators are for a single
random variable.

The empirical MI estimator gives the maximum likelihood estimate and is based
on the observed count frequencies for the values in a bin as shown in the example (see
Table 5.2), where the entropy is estimated from the empirical probability distribution
with nk being the number of samples in bin k and N is the total number of samples.

Hemp = −
(

B∑
k=1

nk

N
· log

nk

N

)

The empirical estimator gives an underestimate of entropy due to the undersam-
pling of bins when the number of bins B is large. The Miller–Madow estimator [21]
accounts for this bias by adjusting the MI estimate by a constant factor proportional
to the number of bins and samples.

Hmm = Hemp + B − 1

2 · N

Here B is the number of bins and N the number of samples.

www.it-ebooks.info

http://www.it-ebooks.info/

METHODS 137

The shrinkage estimator [22] combines two models for defining cell probabilities,
one model with a cell probability of 1

B
and the empirical model with a cell probability

nk

N
.

p̂λ(nk) = λ
1

B
+ (1 − λ)

nk

N

The λ parameter is estimated by minimizing the mean squared error for the two models
for each k of B bins.

λ∗ = argminλ∈[0,1]E

[∑
k∈B

(pλ(nk) − p(nk))2

]

The entropy for the shrink estimator is computed by

Ĥ shrink = −
p∑

k=1

p̂λ(nk) log p̂λ(nk)

The Schürmann–Grassberger [23] uses a Dirichlet probability distribution as con-
jugate prior. The Dirichlet distribution is a multinomial distribution with mean values
θk.

f (χ; θ) =
∏

k∈χ �(θk)

�(
∑

k∈χ θk)

∏
k∈χ

x
θk−1
k

The average θk are computed from the posterior using the maximum-likelihood func-
tion of the empirical estimator and the Dirichlet prior. The posterior with Schürmann–
Grassberger parameters 1

B
equals

θ̂k = nk + 1
B

N + 1

Note that one pseudocount is added in overall to all bins (N + 1). The entropy is
computed by

Ĥdir = −
p∑

k=1

θ̂k log θ̂k

5.2.3 Global Measures

In the following, we describe global error measures to evaluate the performance of
the inferred network. The most widely used statistical measures are obtained by com-
parison of an inferred (predicted) network with the true network underlying the data.
From the measures listed below, three pairwise combinations thereof are frequently
used to assess the performance of network inference algorithms. In the following,
we show quantities that are estimated from relations between the number of true
positives, true negatives, false positives, and false negatives.

www.it-ebooks.info

http://www.it-ebooks.info/

138 INFLUENCE OF STATISTICAL ESTIMATORS ON THE LARGE-SCALE

The recall, also known as sensitivity, denotes the proportion of true positive inferred
edges relative to all edges in the reference network.

Recall (sensitivity) R = TP

TP+FN
(5.5)

The precision gives the proportion of correctly inferred edges relative to all inferred
edges.

Precision P = TP

TP+FP
(5.6)

The specificity is a measure for the relative proportion of edges which were cor-
rectly rejected.

Specificity S = TN

TN+FP
(5.7)

The complementary sensitivity is a measure for the proportion of falsely inferred
edges.

Complementary sensitivity Rc = 1 − sensitivity = FP

TN+FP
(5.8)

The accuracy measures the overall proportion of true edges of the reference network
to all falsely inferred and true edges.

Accuracy A = TP+TN

TP+TN+FP+FN
(5.9)

Mutual information-based network inference algorithms obtain a rank for each
predicted edge denoted by a rank statistic or the MI estimate as for example used in
C3NET. The inferred network is obtained by a defined threshold θ ∈ 	 for the rank
statistic of the edges. When the true network is known the threshold that gives the best
inference performance can be defined by quantifying the global proportions of true
and falsely predicted edges. The first global measure we describe is the area under
the curve for the receiver operator characteristics (AUC-ROC) [24]. The ROC curve
represents the sensitivity (true positive rate, TPR) as function of the complementary
sensitivity (false positive rate, FPR) obtained by using various threshold values θ ∈ 	.
For each threshold θ, a confusion matrix is obtained that contains the number of true
positive, false positives, true negatives, and false negative predictions. The ROC curve
of a good classifier is shifted to the upper left side above the main diagonal that shows
higher true positive than false positive predictions.

The second measure is the AUC-PR (area under the precision-recall curve) that is
obtained similarly as AUC-ROC. The PR curve represents the precision (predicted
true positives) as function of the sensitivity (recall, true positive rate). In contrast to
the AUC-ROC curve the AUC-PR shows for a good classifier a convex curve shifted
to the upper right side showing increase of precision and recall performance. The

www.it-ebooks.info

http://www.it-ebooks.info/

METHODS 139

AUC-ROC area under the curve value is computed by a numerical integration along
each point of the curve.

When the rate of positive and false positives or precision and recall are equal the
classifier predicts as good as a random guess. This corresponds to a diagonal line
along the ROC or PR space. An AUC-ROC or AUC-PR value of 0.5 corresponds to
a classifier performing as good as a random guess.

The third measure is the F -score that describes a weighted average of the precision
and recall.

F = 2
PR

P + R
, (5.10)

also called F1 because it is a special form of

Fβ = (1 − β2)
PR

β2(P + R)
. (5.11)

The performance measure is obtained by the maximal F -score. This leads to a θ-
dependence of all quantities listed above and, hence, allows to obtain a functional
behavior among these measures.

We want to emphasize that all measures presented above are general statistical
measures used in statistics and data analysis. None of them is specific to our problem
under consideration, namely, the inference of networks. Further, all of these measures
can only be applied to data for which the underlying network structure is known,
because the true network is needed for calculating the above measures.

5.2.4 Ensemble Data and Local Network-Based Measures

In contrast to the above measures, which were global measures, we present now lo-
cal network-based measures introduced recently [25,26]. These local network-based
measures are based on ensemble data and the availability of a reference network G

that represents the “true” regulatory network. Ensemble data means that there is more
than one dataset available from the biological phenomenon under investigation. This
ensemble could be obtained either by bootstrapping from one large dataset, from a
simulation study or by conducting multiple experiments.

After the ensemble of data D = {D1(G), . . . , Db(G)} is obtained, application of
an inference algorithm results in an ensemble of estimated networks Ge = {Gi}bi=1
(Fig. 5.3). Here, we emphasize that each dataset depends on the underlying network
structure G that governs the coupling among the genes by writing, for example, Di(G).
Further, this indicates that always the same network G is used. From the ensemble
of estimated networks Ge = {Gi}bi=1 one obtains one probabilistic network GP . This
network is a weighted network and the weight of each edge is defined by

wij = number of times edge eij is present in Ge

b
. (5.12)

www.it-ebooks.info

http://www.it-ebooks.info/

140 INFLUENCE OF STATISTICAL ESTIMATORS ON THE LARGE-SCALE

D1(G)

D2(G)

Db(G)

Ensemble data

G1

G2

Gb

G

Estimated networks

Experiment
bootstrap

Simulation

GP

Probabilistic network

FIGURE 5.3 Schematic visualization of ensemble data of which networks are inferred and
subsequently aggregated to estimate a probabilistic network.

It is easy to see that wij corresponds to the probability that edge eij is present in Ge,

wij = Prob(gene i is connected with gene j in Ge). (5.13)

The aggregation of an ensemble of networks to obtain the probabilistic network Ge is
visualized in Figure 5.4.

If the network structure of the underlying network G is available it is possible to
obtain estimates of the TPR and TNR of edges and nonedges in G. For example, if
there is an edge between gene i and j in G we obtain,

TPRij = number of times edge eij is present in Ge

b
. (5.14)

If there is no edge between gene i and j in G we obtain instead,

TNRij = number of times edge eij is not present in Ge

b
. (5.15)

This is visualized in Figure 5.5. It is important to realize that the network G is here used
to classify edges/nonedges to different edge sets. Such a classification is not possible

Probabilistic network

G1

G2

Gb

GP

Weight i−j =(number of times edge i−j is present in {Gi})/b

i
j

FIGURE 5.4 The ensemble of networks {Gi} is used to obtain a weighted network GP .

www.it-ebooks.info

http://www.it-ebooks.info/

METHODS 141

Probabilistic network

G1

G2

Gb

GP

TPR of i−j =(number of times edge i−j is present in {Gi})/b

i
j

True network
G

k

TNR of i−k =(number of times no edge i−k is present in {Gi})/b

Knowledge about TP and TN edges

FIGURE 5.5 If the true network G is used in addition to the ensemble of networks {Gi} one
obtains estimates for the TPR and TNR of all edges.

without G. From Equations 5.14 and 5.15, follow the corresponding negative rates
by

FNRij = 1 − TPRij (5.16)

FPRij = 1 − TNRij (5.17)

and, hence, all statistical measures described in Section 5.2.3. However, it should
be emphasized that now, not the global inference performance with respect to the
entire network is characterized but of individual edges. To make this clear, we are
calling such measures local network-based measures [25,26]. The Equations 5.14–
5.17 provide the finest resolution obtainable because an edge is the most basic unit
in a network.

A practical consequence of the information provided by {TPRij} and {TNRij}
is that it is possible to construct further local network-based measures representing
larger subparts of a network. For example, one can construct measures to characterize
the inferrability of network motifs consisting of n genes or the influence of the degree
of genes. Principally, any combination of {TPRij} and {TNRij} values would result
in a valid (statistical) measure, for example, of network motifs. Further examples of
such measures can be found in Refs. [25,26].

In order to make the basic principle behind such a construction of local network-
based measures more clear, we present as an example motifs consisting of three genes.
Recently, it has been recognized that network motifs are important building blocks
of various complex networks, including gene networks [27–30]. For this reason,
biologically, it is of interest to study their inferrability. Formally, we define the true
reconstruction rate of a motif by

p = 1

3

3∑
1

TPRi. (5.18)

www.it-ebooks.info

http://www.it-ebooks.info/

142 INFLUENCE OF STATISTICAL ESTIMATORS ON THE LARGE-SCALE

FIGURE 5.6 Two examples of three-gene network motifs.

Here, TPR corresponds either to a TPR if two genes are connected or to a TNR if
these genes are unconnected and the factor results from the fact that we consider
three-gene motifs only, however, extensions thereof are straightforward. Figure 5.6
illustrates two examples of three-gene motifs. From Equation 5.18, we obtain for
these two motifs

p[motif type = A] = 1

3

(
TPR(1 ← 2) + TPR(2 → 3) + TNR(1 /↔ 3)

)
, (5.19)

p[motif type = B] = 1

3

(
TPR(1 → 2) + TPR(2 → 3) + TPR(1 → 3)

)
. (5.20)

Each of these measures represents the inferrability of a certain motif type. Averaging
over all motifs of the same type found in network leads to the mean true reconstruction
rate p[motif type] of a certain motif type.

5.2.5 Local Network-Based Measures

The most frequently studied local structural properties of biological networks are,
for example, network motifs, node degree classes, and community structures. In this
section, we will address the influence of different mutual information estimators on
local network-based measures. The local measure is based on the estimated true
positive rate (TPR) of the inferred edges from the ensemble. We demonstrate the
structural influence on the true positive rate (TPR) using binary classification of the
edges according to the degree of the nodes enclosing an edge. From the ensemble the
TPR weights for the edges are compared between two classes defined from the degree
of their nodes. We introduce a local measure for directed and undirected networks
that are defined by the measure D1 and D2.

The measure D1 is defined for a directed graph as the sum of the out-degree of
node i plus the in-degree of node j:

D1
ij = deg(vi)

in + deg(vj)out (5.21)

www.it-ebooks.info

http://www.it-ebooks.info/

METHODS 143

i j i j

D1 = 4 D 2 = 6

(a) (b)

FIGURE 5.7 An edge (dashed) is scored according to the degree of the adjacent nodes for
(a) directed network (sum of out degree i and in degree j) and (b) undirected network (sum of
degree i and degree j).

A binary classification of the edges is obtained by assigning edges to two classes of
edges, depending on the value of D1. Specifically, for D1 the classes are defined by

• Class I: Edges with D1 ≤ 3 (corresponds to a chain-like structure)
• Class II: All other edges

The measure D2 is defined for an undirected graph by the sum of the degrees of
node i plus the degrees of node j:

D2
ij = deg(vi) + deg(vj) (5.22)

As shown above for D1, a binary classification of the edges is obtained by assigning
edges to two classes of edges with a high graph density score and a low graph density
score. For D2 the classes are defined by

• Class I: Edges with D2 ≤ 4 (corresponds to a chain-like structure)
• Class II: All other edges

An example is shown in Figure 5.7, for the directed measure D1 and the undirected
measure D2. We measure the influence of mutual information estimators on the two
defined edge classes. The ensemble of networks is inferred from bootstrap expression
datasets to estimate the TPR (see Section 5.2.4). From the ensemble, we obtain the
distribution of the mean TPR for the two classes of both measures in D1 and D2 that
are compared.

5.2.6 Network Structure

The structure of networks can be described by homogeneous networks and inhomo-
geneous networks [31]. Homogeneous networks belong to the class of exponential
networks such as the Erdös and Rènyi [32], [33] and Watts and Strogatz graph model
(Small-World) [34], where all nodes in the network have approximately the same
number of edges [31]. Inhomogeneous networks belong to the class of scale-free net-
works in which the number of edges for the nodes follow a power–law distribution

www.it-ebooks.info

http://www.it-ebooks.info/

144 INFLUENCE OF STATISTICAL ESTIMATORS ON THE LARGE-SCALE

ε=0.003 ε =0.006 ε=0.008

FIGURE 5.8 Three Erdös–Rènyi networks with edge density ε = {0.003, 0.006, 0.008}.

[35]. This property allows the network to contain highly connected nodes such as
network hubs [31].

We study the influence of the network structure on the C3NET inference using
random networks with different values of p. Here, p is the probability for the presence
of an edge between the two nodes. Because real gene networks, for example, the
transcriptional regulatory network or the protein network, are sparse the value of p

needs to be chosen to fall within a realistic interval. Typically, gene networks are
sparse with an edge density of about ∼ 10−3 [36].

For our study, we are using networks with n = 150 genes resulting in a maximal
number of E = 22, 350 (directed) edges. We generated three Erdös–Rènyi graphs
with edge density ε = {0.003, 0.006, 0.008} with {22, 19, 10} unconnected nodes.
The networks are shown in Figure 5.8. For the number of edges Eε the density of a
graph is defined by ε = Eε/E with the number of edges Eε = {77, 145, 170}.

A broad collection of procedures for in silico gene expression simulation are avail-
able, for example, GeneNetWeaver [37], NetSim [38], SYNTREN [39] for time-
course and steady-state experiments that are used to validate the network inference
accuracy. For our study, we generate simulated steady-state gene expression datasets.
Gene expression datasets were simulated using SYNTREN [39] with the bionoise
parameter set to 0.05. In SYNTREN, gene expression is modeled using nonlinear
Michaelis–Menten kinetics with a superposed function that models biological noise
not related to the experiment.

5.3 RESULTS

We compare the inference performance of the C3NET [12] for four mutual infor-
mation estimators. We simulated gene expression datasets for random graphs for
different edge densities. We studied the global inference performance and structural
characteristics of the inferred networks.

5.3.1 Global Network Inference Performance

We study the influence of four different mutual information estimators on the
C3NET network inference performance. We use the F -score measure to measure the

www.it-ebooks.info

http://www.it-ebooks.info/

RESULTS 145

0.
5

0.
6

0.
7

0.
8

F
−s

co
re

Empirical
mm
Shrink
sg

E
qu

al
 fr

eq

E
qu

al
 w

id
th

G
lo

ba
l e

qu
al

 w
id

th

E
qu

al
 fr

eq

E
qu

al
 w

id
th

G
lo

ba
l e

qu
al

 w
id

th

E
qu

al
 fr

eq

E
qu

al
 w

id
th

G
lo

ba
l e

qu
al

 w
id

th

ε=0.003

ε=0.006

ε=0.008

FIGURE 5.9 The influence of different discretization methods on the global network infer-
ence accuracy F -score measure for three Erdös–Rènyi networks using four MI estimators. The
simulated gene expression datasets have a sample size of 200.

performance for C3NET network inference from simulated gene expression data.
First, we compared the impact of three discretization methods for each estimator.
For the three network types the equal width and global equal width discretization
showed the highest inference accuracy for C3NET compared to the equal frequency
discretization.

The equal and global equal width discretization favor the Miller–Madow estima-
tor followed by the empirical estimator to be most beneficial for the C3NET infer-
ence performance. The Schürmann–Grassberger and Shrink estimator perform worse.
However, the Schürmann–Grassberger performs better than the Shrink estimator
(Fig. 5.9). For the equal frequency discretization, we do not observe a substantial
difference of the inference performance for the empirical, Miller–Madow, Shrink,
and Schürmann–Grassberger estimator (Fig. 5.9).

Further, we studied the influence of the estimators for each of the discretization
methods on the sample size (equal frequency discretization Fig. 5.10, equal width
discretization Fig. 5.11, global equal width discretization Fig. 5.12). For all network

www.it-ebooks.info

http://www.it-ebooks.info/

146 INFLUENCE OF STATISTICAL ESTIMATORS ON THE LARGE-SCALE

0.
4

0.
5

0.
6

0.
7

0.
8

Empirical
mm
Shrink
sg

50 10
0

20
0

50
0

10
00 50 10
0

20
0

50
0

10
00 50 10
0

20
0

50
0

10
00

ε=0.003

ε=0.006

ε=0.008

F
−s

co
re

FIGURE 5.10 The influence of equal frequency discretization method on the global network
inference accuracy F -score measure for three Erdös–Rènyi networks using four MI estimators.

types, the inference performance increases with the sample size. The Miller-Madow
estimator in combination with the equal width and global equal width discretization
is the most beneficial setting for the inference performance of C3NET.

The C3NET infers a sparse network with maximal one edge for each gene. Due to
the limited number of edges in an inferred C3NET network, more densely connected
network structure cannot be inferred. This effect can be observed in Figures 5.9–5.12,
where the performance for the network inference is decreasing with an increasing edge
density.

5.3.2 Local Network Inference Performance

In the previous section, we studied the impact of MI estimators on the global network
inference performance of C3NET. When global measures are used, we measure the
average influence of the MI estimators on the inference performance for all edges.
Local network-based measures allow to study the local network inference perfor-
mance for different edge classes. We use the D1 measure to classify edges in the
three Erdös–Rènyi reference networks into two edge classes connected to nodes with
a low (Class I) and a high (Class II) edge degree. For each dataset, we obtain a mea-
sure for the true positive rate from the Bootstrap generated ensemble of networks.
We compare the distribution of median true positive rates for D1 Class I and D1

www.it-ebooks.info

http://www.it-ebooks.info/

CONCLUSION AND SUMMARY 147

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Empirical
mm
Shrink
sg

50 10
0

20
0

50
0

10
00 50 10

0

20
0

50
0

10
00 50 10

0

20
0

50
0

10
00

ε=0.003

ε=0.006

ε=0.008

F
−s

co
re

FIGURE 5.11 The influence of equal width discretization method on the global network
inference accuracy F -score measure for three Erdös–Rènyi networks using four MI estimators.

Class II for 100 datasets for each network. In Figures 5.13 and 5.14, we show the
distribution of the median true positive rate for the three simulated gene expression
datasets and different sample sizes for the two classes in D1. The Class I edges show
a high inference performance for the D1 measure, while Class II edges have a low
inference performance. With increasing edge density and increasing sample size the
true positive rate for Class I edges approaches 1 while for Class II the true positive
rate approaches 0.

For Class I edges, the true positive rates among MI estimators do not show a
substantial difference, while the Schürmann–Grassberger estimator has the tendency
to perform worse than the other MI estimators. For Class II edges, the Miller–Madow
estimators shows the best inference performance. We performed the same analysis
using the D2 measure (not shown). The D1 and D2 measure show similar results for
the relative performance of the four MI estimators.

5.4 CONCLUSION AND SUMMARY

Our study shows that the choice of the discretization method and MI estimator has a
crucial influence on the inference performance of C3NET. In detail, the equal width

www.it-ebooks.info

http://www.it-ebooks.info/

148 INFLUENCE OF STATISTICAL ESTIMATORS ON THE LARGE-SCALE

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

F
−s

co
re

Empirical
mm
Shrink
sg

50 10
0

20
0

50
0

10
00 50 10
0

20
0

50
0

10
00 50 10
0

20
0

50
0

10
00

ε=0.008

ε=0.006
ε=0.003

FIGURE 5.12 The influence of global equal width discretization method on the F -score for
three Erdös–Rènyi networks using four MI estimators.

and global equal width showed the best performance in combination with the Miller–
Madow estimator. However, the major influence on the C3NET inference performance
was observed for the discretization methods, where equal width and global equal width
discretization markedly outperforms the equal frequency discretization.

In the study conducted by Olsen et al. [16], the influence of discretization, the
mutual information estimator, sample size, and network size was studied for the
ARACNE, CLR, and MRNET GRN inference algorithms. In contrast to our results,
the equal frequency discretization was observed to outperform the equal width dis-
cretization for the used inference algorithms. In addition, the discrete estimators did
not show a large difference as seen in our study, for example, for Miller–Madow.

The results suggest that the influence of the MI estimator on the global inference
performance is highly dependent on the inference algorithm used. It is, therefore, a
prerequisite to test GRN inference algorithms individually for different discretization
and mutual information estimators.

Global error measures quantify the average inference performance for all edges in
a network. Local measures allow to zoom-in the inference performance of individual
parts of the network, down to individual edges. For C3NET, edges of leaf nodes and
edges of linearly connected nodes of a network are inferred with higher performance

www.it-ebooks.info

http://www.it-ebooks.info/

CONCLUSION AND SUMMARY 149

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

10
050 50 5020
0

50
0

10
00 10
0

20
0

50
0

10
00 10
0

20
0

50
0

10
00

Empirical
mm
Shrink
sg

ε=0.003
ε=0.006

ε=0.008

D1 Dlass I

T
ru

e
p

o
si

ti
ve

 r
at

e

FIGURE 5.13 Class I edges (according to D1) in the three Erdös–Rènyi networks using four
different MI estimators. Simulated gene expression datasets for Erdös–Rènyi networks with
edge density ε for sample sizes ranging from 50 to 1000 samples.

[12]. Edges from nodes with a high degree are likely underrepresented as they are
more difficult to infer.

We studied the influence of the MI estimators on the performance for different
edge classes that were classified by local network-based measures. Two edge classes
were defined for edges of leaf and linearly connected nodes, and highly connected
nodes in the network. The inference ability of C3NET for an edge was quantified by
the true positive rate measured from an ensemble of networks inferred from Bootstrap
datasets. From the set of datasets for a network the distribution of median true positive
rate is obtained for Class I and Class II edges. We compared the resulting distributions
of true positive rates between edges of Class I and Class II. As expected, we observed
high true positive rates for Class I edges, while Class II edges show low true positive
rates. As the true positive rate for Class I edges was very high the differences among
the MI estimators were not so apparent as for Class II edges. For Class II edges, the
Miller–Madow estimator resulted in the best inference performance for C3NET, as
for the global error measure.

In this chapter, we presented a simulation study to analyze the impact of MI
estimators on the inference performance of C3NET. The inference performance was
studied using global and local network-based measures for simulated gene expression

www.it-ebooks.info

http://www.it-ebooks.info/

150 INFLUENCE OF STATISTICAL ESTIMATORS ON THE LARGE-SCALE

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50 10
0

20
0

50
0

10
00 50 10
0

20
0

50
0

10
00 50 10

0

20
0

50
0

10
00

Empirical
mm
Shrink
sg

ε=0.003

ε=0.006

ε=0.008

D Class II
Tr

ue
 p

os
it

iv
e

ra
te

1

FIGURE 5.14 Class II edges (according to D1) in the three Erdös–Rènyi networks using
four different MI estimators. Simulated gene expression datasets for Erdös–Rènyi networks
with edge density ε for sample sizes ranging from 50 to 1000 samples.

data from Erdös–Rènyi networks with different edge densities and varying sample
sizes. Among the tested combinations of discretization methods and MI estimators
we recommend the use of the Miller–Madow estimator with equal width or global
equal width discretization for C3NET network inference.

ACKNOWLEDGMENT

We would like to thank Shailesh Tripathi for fruitful discussions. For our simulations
we used R [40], minet [41], and igraph [42].

REFERENCES

1. F. Emmert-Streib, M. Dehmer. Networks for systems biology: conceptual connection of
data and function. IET Syst. Biol. 5, 185–207 (2011).

2. F. Emmert-Streib, G.V. Glazko. Network biology: a direct approach to study biological
function. Wiley Interdiscip. Rev. Syst. Biol. Med. 3, 379-3-91 (2011).

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 151

3. G. Stolovitzky, A. Califano (ed.) Reverse Engineering Biological Networks: Opportunities
and Challenges in Computational Methods for Pathway Inference. Wiley-Blackwell, 2007.

4. G. Stolovitzky, R.J. Prill, A. Califano. Lessons from the DREAM 2 Challenges. Ann. N.
Y. Acad. Sci. 1158, 159–195 (2009).

5. M. Schena (ed.) Protein Microarrays. Jones and Bartlett Publishers, 2004.

6. S. Sechi, (ed.) Quantitative Proteomics by Mass Spectrometry. Humana Press, 2007.

7. P. Collas, J.A. Dahl. Chop it, ChIP it, check it: the current status of chromatin immuno-
precipitation. Front Biosci. 13, 929–943 (2008).

8. R. Edgar, M. Domrachev, A.E. Lash. Gene expression omnibus: NCBI gene expression
and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

9. P.R. Rosenbaum. Observational Studies, Springer, New York, 2002.

10. R. Rubin. Estimating causal effects of treatments in randomized and nonrandomized stud-
ies. J. Educ. Psychol. 66, 688–701 (1974).

11. J.J. Faith, B. Hayete, J.T. Thaden, I. Mogno, J. Wierzbowski, G. Cottarel, S. Kasif, J.J.
Collins, T.S. Gardner. Large-scale mapping and validation of Escherichia coli transcrip-
tional regulation from a compendium of expression profiles. PLoS Biol. 5(1), e8 (2007).

12. G. Altay, F. Emmert-Streib. Inferring the conservative causal core of gene regulatory net-
works. BMC Syst. Biol. 4, 132 (2010).

13. A.L. Barabasi, Z.N. Oltvai. Network biology: understanding the cell’s functional organi-
zation. Nat. Rev. 5, 101–113 (2004).

14. E.E. Schadt. Molecular networks as sensors and drivers of common human diseases. Nature
461, 218–223 (2009).

15. A.J. Butte, I.S. Kohane. Mutual information relevance networks: functional genomic clus-
tering using pairwise entropy measurements. Pac. Sym. Biocompu. 5, 418–429 (2000).

16. C. Olsen, P.E. Meyer, G. Bontempi. On the impact of entropy estimation on transcriptional
regulatory network inference based on mutual information. EURASIP J. Bioinform. Syst.
Biol. 308959, 2009.

17. A.J. Butte, I.S. Kohane. Mutual information relevance networks: Functional genomic clus-
tering using pairwise entropy measurements. Pac. Sym. on Biocomput. 5, 415–26 (2000).

18. A.A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky et al. ARACNE:
an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular
context. BMC Bioinform. 7, S7 (2006).

19. T.M. Cover, J. Thomas. Elements of Information Theory. Wiley, 1991.

20. Y. Yang, G.I. Webb. Proportional k-interval discretization for naive-bayes classifiers. Pro-
ceeding EMCL ’01 Proceedings of the 12th European Conference on Machine Learning,
2001.

21. L. Paninski. Estimation of entropy and mutual information. Neural Comput. 15, 1191–1253
(2003).

22. J. Schafer, K. Strimmer. A shrinkage approach to large-scale covariance matrix estimation
and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4 (2005).

23. T. Schürmann, P. Grassberger. Entropy estimation of symbol sequences. Chaos 6, 414–427
(1996).

24. T. Fawcett. An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006).

25. F. Emmert-Streib, G. Altay. Local network-based measures to assess the inferability of
different regulatory networks. IET Syst. Biol. 4, 277–88 (2010).

www.it-ebooks.info

http://www.it-ebooks.info/

152 INFLUENCE OF STATISTICAL ESTIMATORS ON THE LARGE-SCALE

26. G. Altay, F. Emmert-Streib. Revealing differences in gene network inference algorithms
on the network level by ensemble methods. Bioinformatics 26, 1738–1744 (2010).

27. U. Alon. An Introduction to Systems Biology: Design Principles of Biological Circuits.
Chapman & Hall/CRC, Boca Raton, FL, 2006.

28. Y. Artzy-Randrup, S.J. Fleishman, N. Ben-Tal, L. Stone. Comment on “Network Mo-
tifs: Simple Building Blocks of Complex Networks” and “Superfamilies of Evolved and
Designed Networks”. Science 305(5687), 1107c (2004).

29. G. Ciriello, C. Guerra. A review on models and algorithms for motif discovery in protein–
protein interaction networks. Brief Funct. Genomic Proteomic 7(2), 147–156 (2008).

30. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon. Network motifs:
simple building blocks of complex networks. Science 298(5594), 824–827 (2002).

31. R. Albert, H. Jeong, A.L. Barabasi. Error and attack tolerance of complex networks. Nature
406, 378–382 (2000).

32. P. Erdös, A. Rènyi. On random graphs. Pub. Math. 6, 290–297 (1959).

33. B. Bollobas. Random Graphs. Cambridge University Press, 2001.

34. D.J. Watts, S.H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature 393,
440–442 (1998).

35. A.L. Barabasi, R. Albert. Emergence of scaling in random networks. Science 286, 509–512
(1999).

36. R.D. Leclerc. Survival of the sparsest: robust gene networks are parsimonious. Mol. Syst.
Biol. 4, 213 (2008).

37. T. Schaffter, D. Marbach, D. Floreano. GeneNetWeaver: in silico benchmark generation
and performance profiling of network inference methods. Bioinformatics 27(16), 2263–
2270 (2011).

38. B. Di Camillo, G. Toffolo, C. Cobelli. A gene network simulator to assess reverse engi-
neering algorithms. Ann. N. Y. Acad. Sci. 1158, 125–142 (2009).

39. T. Van den Bulcke, K. Van Leemput, B. Naudts, P. van Remortel, H. Ma, A. Verschoren,
B. De Moor, K. Marchal. SynTReN: a generator of synthetic gene expression data for
design and analysis of structure learning algorithms. BMC Bioinform. 7, 43 (2006).

40. R Development Core Team. R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria, 2011.

41. P.E. Meyer, F. Lafitte, G. Bontempi. minet: A R/Bioconductor package for inferring large
transcriptional networks using mutual information. BMC Bioinform. 9, 461 (2008).

42. G. Csardi, T. Nepusz. The igraph software package for complex network research. Inter-
Journal, Complex Systems, 1695, 2006.

www.it-ebooks.info

http://www.it-ebooks.info/

6
WEIGHTED SPECTRAL
DISTRIBUTION: A METRIC
FOR STRUCTURAL ANALYSIS
OF NETWORKS

Damien Fay, Hamed Haddadi, Andrew W. Moore,
Richard Mortier, Andrew G. Thomason, and Steve Uhlig

6.1 INTRODUCTION

Graph comparison is a problem that occurs in many branches of computing, from
vision to speech processing to systems. Many techniques exist for graph comparison,
for example, the edit distance [1] (the number of link and node additions or deletions
required to turn one graph into another), or counting the number of common sub-
structures in two graphs [2]. Unfortunately, these methods are too computationally
expensive for large graphs such as the Internet topologies studied here. Moreover, they
are inappropriate for dynamic graphs, resulting in varying edit distances or substruc-
ture counts. Currently used common “metrics” include the clustering coefficient, the
assortativity coefficient, the node degree distribution, and the k-core decomposition.
However, these are not metrics in the mathematical sense, but rather are measures.
This distinction is important as a measure cannot be used to determine unique dif-
ferences between graphs: two graphs with the same measures may not in fact be the
same. For example, two graphs may have the same clustering coefficient but hugely
different structures.

Statistical and Machine Learning Approaches for Network Analysis, Edited by Matthias Dehmer and
Subhash C. Basak.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

153

www.it-ebooks.info

http://www.it-ebooks.info/

154 WEIGHTED SPECTRAL DISTRIBUTION

In this chapter, we present the weighted spectral distribution (WSD), a true metric
in the mathematical sense, which compares graphs based on the distribution of a
decomposition of their structure. Specifically, the WSD is based on the spectrum of
the normalized Laplacian matrix and is thus strongly associated with the distribution
of random walk cycles in a network. A random walk cycle occurs when we find that
we have returned to a node having walked N steps away from it. The probability of a
random walk cycle originating at a node indicates the connectivity of that node: a low
probability indicates high connectivity (there are many routes, few of which return)
while a high probability indicates high clustering (many of the routes lead back to the
original node).

The WSD is computationally inexpensive and so can be applied to very large graphs
(more than 30,000 nodes and 200,000 edges). Also, it expresses the graph structure
as a simple plotted curve that can be related to two specific properties of graphs:
hierarchy and local connectivity. Given that the WSD is a metric in the mathematical
sense several applications become possible: assessment of synthetically generated
topologies based on real measurements, where the generated graphs should share
some common structure with the original measurements rather than exactly matching
them; parameter estimation for topology generators with respect to a target dataset;
direct comparison among topology generators using these optimal parameters; and
quantification of change in the underlying structure of an evolving topology.

6.2 WEIGHTED SPECTRAL DISTRIBUTION

We now derive our metric, the weighted spectral distribution, relating it to another
common structural metric, the clustering coefficient, before showing how it charac-
terizes networks with different mixing properties.

Denote an undirected graph as G = (V, E) where V is the set of vertices (nodes)
and E is the set of edges (links). The adjacency matrix of G, A(G), has an entry of
one if two nodes, u and v, are connected and zero otherwise

A(G)(u, v) =
⎧⎨
⎩

1, if u, v are connected

0, if u, v are not connected
(6.1)

Let dv be the degree of node v and D = diag(sum(A)) be the diagonal matrix having
the sum of degrees for each node (column of matrix) along its main diagonal. Denoting
by I the identity matrix (I)i,j = 1 if i = j, 0 otherwise, the normalized Laplacian L

associated with graph G is constructed from A by normalizing the entries of A by the
node degrees of A as

L(G) = I − D−1/2AD−1/2 (6.2)

www.it-ebooks.info

http://www.it-ebooks.info/

WEIGHTED SPECTRAL DISTRIBUTION 155

or equivalently

L(G)(u, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if u = v and dv /= 0

− 1√
dudv

, if u and v are adjacent

0, otherwise

(6.3)

As L is a real symmetric matrix there is an orthonormal basis of real eigenvec-
tors e0, . . . , en−1 (i.e., eie

T
j = 0, i /= j, and eie

T
i = 1) with associated eigenvalues

λ0, . . . , λn−1. It is convenient to label these so that λ0 ≤ . . . ≤ λn−1. The set of pairs
(eigenvectors and eigenvalues of L) is called the spectrum of the graph. It can be seen
that

L(G) =
∑

i

λieie
T
i (6.4)

The eigenvalues λ0, . . . , λn−1 represent the strength of projection of the matrix
onto the basis elements. This may be viewed from a statistical point of view [3]
where each λieie

T
i may be used to approximate A(G) with approximation error

inversely proportional to 1 − λi. However, for a graph, those nodes which are best
approximated by λieie

T
i in fact form a cluster of nodes. This is the basis for spectral

clustering, a technique which uses the eigenvectors of L to perform clustering of a
dataset or graph [4]. The first (smallest) nonzero eigenvalue and associated eigen-
vector are associated with the main clusters of data. Subsequent eigenvalues and
eigenvectors can be associated with cluster splitting and also identification of smaller
clusters [5]. Typically, there exists what is called a spectral gap in which for some
k and j, λk � λk+1 ≈ 1 ≈ λj−1 � λj . That is, eigenvalues λk+1, . . . , λj−1

1 are ap-
proximately equal to one and are likely to represent links in a graph which do not
belong to any particular cluster. It is then usual to reduce the dimensionality of the
data using an approximation based on the spectral decomposition. However, in this
chapter we are interested in representing the global structure of a graph (e.g., we are
interested in the presence or absence of many small clusters), which is essentially
the spread of clustering across the graph. This information is contained in all the
eigenvalues of the spectral decomposition.

Let x = (x0, . . . , xn−1) be a vector. From Equation 6.3 we see that

xLxT =
∑
uv∈E

(xu/
√

du − xv/
√

dv)2 (6.5)

1That is, the eigenvalues at the center of the spectrum.

www.it-ebooks.info

http://www.it-ebooks.info/

156 WEIGHTED SPECTRAL DISTRIBUTION

Now, the eigenvalues cannot be large because from Equation 6.5 we obtain

xLxT ≤
∑
uv∈E

(xu/
√

du − xv/
√

dv)2

+ (xu/
√

du + xv/
√

dv)2

= 2
∑

u

x2
u = 2xxT (6.6)

and so λi = eiLeT
i ≤ 2. What is more, the mean of the eigenvalues is 1 because

∑
i

λi = tr(L) = n (6.7)

by Equation 6.3, where tr(L) is the trace of L.
To summarize, the eigenvalues of L lie in the range 0–2 (the smallest being 0),

that is, 0 = λ0 ≤ . . . ≤ λn−1 ≤ 2, and their mean is 1.
The distribution of the n numbers λ0, . . . , λn−1 contains useful information about

the network, as will be seen. In turn, information about this distribution is given by its
moments in the statistical sense, where the Nth moment is 1/n

∑
i(1 − λi)N . These

moments have a direct physical interpretation in terms of the network, as follows.
Writing B for the matrix D−1/2AD−1/2, so that L = I − B, then by Equation 6.3 the
entries of B are given by

(D−1/2AD−1/2)i,j = Ai,j√
di

√
dj

(6.8)

Now the numbers 1 − λi are the eigenvalues of B = I − L, and so
∑

i(1 − λi)N is
just tr(BN). Writing bi,j for the (i, j)th entry of B, the (i, j)th entry of BN is the sum
of all products bi0,i1bi1,i2 , . . . , biN−1iN where i0 = i and iN = j. But bi,j , as given by
Equation 6.8, is zero unless nodes i and j are adjacent. So we define an N-cycle in G to
be a sequence of vertices u1u2 . . . uN with ui adjacent to ui+1 for i = 1, . . . , N − 1
and with uN adjacent to u1. (Thus, for example, a triangle in G with vertices set
{a, b, c} gives rise to six 3-cycles abc, acb, bca, bac, cab, and cba. Note that, in
general, an N-cycle might have repeated vertices.) We now have

∑
i

(1 − λi)
N = tr(BN) =

∑
C

1

du1du2 . . . duN

(6.9)

the sum being over all N-cycles C = u1u2 . . . uN in G. Therefore,
∑

i(1 − λi)N

counts the number of N-cycles, normalized by the degree of each node in the cycle.
The number of N-cycles is related to various graph properties. The number of

2-cycles is just (twice) the number of edges and the number of 3-cycles is (six times)
the number of triangles. Hence,

∑
i (1 − λ)3 is related to the clustering coefficient,

as discussed below. An important graph property is the number of 4-cycles. A graph
which has the minimum number of 4-cycles, for a graph of its density, is quasirandom,
that is, it shares many of the properties of random graphs, including, typically, high

www.it-ebooks.info

http://www.it-ebooks.info/

WEIGHTED SPECTRAL DISTRIBUTION 157

connectivity, low diameter, having edges distributed uniformly through the graph,
and so on. This statement is made precise in Refs. [6] and [7]. For regular graphs
Equation (6.7) shows that the sum

∑
i (1 − λ)4 is directly related to the number of

4-cycles. In general, the sum counts the 4-cycles with weights, for the relationship
between the sum and the quasirandomness of the graph in the nonregular case, see
the more detailed discussion in Ref. [8, Chapter 5]. The right-hand side of Equa-
tion 6.9 can also be seen in terms of random walks. A random walk starting at a
vertex with degree du will choose an edge with probability 1/du and at the next
vertex, say v, choose an edge with probability 1/dv, and so on. Thus, the probability
of starting and ending randomly at a vertex after N steps is the sum of the probabilities
of all N-cycles that start and end at that vertex. In other words exactly the right-hand
side of Equation 6.9. As pointed out in Ref. [9], random walks are an integral part of
the Internet AS structure.

The left-hand side of Equation 6.9 provides an interesting insight into graph struc-
ture. The right-hand side is the sum of normalized N-cycles whereas the left-hand
side involves the spectral decomposition. We note in particular that the spectral gap
is diminished because eigenvalues close to one are given a very low weighting com-
pared to eigenvalues far from one. This is important as the eigenvalues in the spectral
gap typically represent links in the network that do not belong to any specific cluster
and are not therefore important parts of the larger structure of the network.

Next, we consider the well-known clustering coefficient. It should be noted that
there is little connection between the clustering coefficient, and cluster identification,
referred to above. The clustering coefficient, γ(G), is defined as the average number
of triangles divided by the total number of possible triangles

γ(G) = 1/n
∑

i

Ti

di(di − 1)/2
, di ≥ 2 (6.10)

where Ti is the number of triangles for node i and di is the degree of node i. Now
consider a specific triangle between nodes a, b, and c. For the clustering coefficient,
noting that the triangle will be considered three times, once from each node, the
contribution to the average is

1

da(da − 1)/2
+ 1

db(db − 1)/2
+ 1

dc(dc − 1)/2
(6.11)

However, for the weighted spectrum (with N = 3), this particular triangle gives rise
to six 3-cycles and contributes

6

dadbdc

(6.12)

So, it can be seen that the clustering coefficient normalizes each triangle according
to the total number of possible triangles while the weighted spectrum (with N = 3)
instead normalizes using a product of the degrees. Thus, the two metrics can be
considered to be similar but not equal. Indeed, it should be noted that the clustering
coefficient is in fact not a metric in the strict sense. While two networks can have the

www.it-ebooks.info

http://www.it-ebooks.info/

158 WEIGHTED SPECTRAL DISTRIBUTION

same clustering coefficient they may differ significantly in structure. In contrast, the
elements of

∑
i (1 − λ)3 will only agree if two networks are isomorphic.

We now formally define the weighted spectrum as the normalized sum of N-cycles
as

W(G, N) =
∑

i

(1 − λi)
N (6.13)

However, calculating the eigenvalues of a large (even sparse) matrix is computa-
tionally expensive. In addition, the aim here is to represent the global structure of a
graph and so precise estimates of all the eigenvalue values are not required. Thus, the
distribution2 of eigenvalues is sufficient. In this chapter, the distribution of eigenval-
ues f (λ = k) is estimated using pivoting and Sylvester’s Law of Inertia to compute
the number of eigenvalues that fall in a given interval. To estimate the distribution,
we use K equally spaced bins.3 A measure of the graph can then be constructed by
considering the distribution of the eigenvalues as

ω(G, N) =
∑
k∈K

(1 − k)Nf (λ = k) (6.14)

where the elements of ω(G, N) form the weighted spectral distribution

WSD : G → 	|K|{k ∈ K : ((1 − k)Nf (λ = k))} (6.15)

In addition, a metric can then be constructed from ω(G) for comparing two graphs,
G1 and G2, as

(G1, G2, N) =
∑
k∈K

(1 − k)N (f1(λ = k) − f2(λ = k))2 (6.16)

where f1 and f2 are the eigenvalue distributions of G1 and G2 and the distribution of
eigenvalues is estimated in the set K of bins ∈ [0, 2]. Equation 6.16 satisfies all the
properties of a metric [10].

We next wish to test if the WSD for graphs generated by the same underlying
process vary significantly (to show that the WSD is stable). To do this, we generate
a set of graphs that have very similar structure and test to see if their WSDs are also
similar. The results of an empirical test are shown in Figure 6.1. This plot was created
by generating 50 topologies using the AB [11] generator with the (fixed) optimum
parameters determined in Section 6.6, but with different initial conditions.4 For each
run the spectral and weighted spectral distributions are recorded yielding 50 × 50 bin
values which are then used to estimate standard deviations. As the underlying model
(i.e., the AB generator) is the same for each run, the structure might be expected to
remain the same and so a “structural metric” should be insensitive to random initial

2The eigenvalues of a given graph are deterministic and so distribution here is not meant in a statistical
sense.
3K can be increased depending on the granularity required.
4We found similar results for other parameters and topology generators.

www.it-ebooks.info

http://www.it-ebooks.info/

A SIMPLE WORKED EXAMPLE 159

FIGURE 6.1 Mean and standard deviations for WSD and (unweighted) spectrum for the AB
model over 50 simulations.

conditions. As can be seen the standard deviation5 of the (unweighted) spectrum,
σfλ (λ), is significantly higher at the center of the spectrum. However, for the WSD,
the standard deviation, σwsd, peaks at the same point as the WSD; the noise in the
spectral gap has been suppressed. The evidence suggests that the WSD successfully
filters out the noise around 1 in the middle region and highlights the important parts
of the signal.

6.3 A SIMPLE WORKED EXAMPLE

After the fairly theoretical previous section, we aim at giving the reader a better
intuition behind the WSD with a simple example. Figure 6.2 shows a small network,
called G1, with seven nodes and eight links. As can be seen there are two cycles of
length 3 in this network and one of length 4. We will take N = 3 in this example
for convenience and without loss of generality. The random walk probabilities are
labeled in Figure 6.2. For example, node 3 has a degree of 5 resulting in a probability
of 1/5th for each edge. The total probability of taking a random walk around each
3-cycle is 6 × 1/2 × 1/3 × 1/3 = 0.33, also shown in Figure.6

Figure 6.3 shows a 3D plot of the absolute value (for clarity) of the eigenvectors
of the normalized Laplacian. The corresponding eigenvalues are shown in Table 6.1.

5Multiplied by a factor of ten for clarity.
6The six comes from the fact that the random walk can start in one of the three nodes and go in one of the
two directions. It can be viewed in our case as really just a nuisance scaling factor.

www.it-ebooks.info

http://www.it-ebooks.info/

160 WEIGHTED SPECTRAL DISTRIBUTION

FIGURE 6.2 A simple example network G1.

1
2

3
4

5
6

7

1

2

3

4

5

6

7

0

0.5

1

Eigenvector

Node

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FIGURE 6.3 Eigenvectors of the simple example network.

www.it-ebooks.info

http://www.it-ebooks.info/

A SIMPLE WORKED EXAMPLE 161

TABLE 6.1 Eigenvalues, WSD, and Dominant Nodes of Example Network

e7 Eigenvector λ 1 − λ (1 − λ)3 Dominant Nodes

0.2500 1 1.8615 −0.8615 −0.6394 3, 1, 2, 6
0.2500 2 1.3942 −0.3942 −0.0612 7, 4, 5
0.5590 3 1.3333 −0.3333 −0.0370 4, 5
0.4330 4 1.0000 0.0000 0.0000 6, 2
0.4330 5 1.0000 0.0000 0.0000 1, 2, 6
0.2500 6 0.4110 0.5890 0.2043 7, 3
0.3536 7 0.0000 1.0000 1.0000 3, 4, 5, 7

∑7
i=1(1 − λi)3 0.4667

The eigenvectors of the normalized Laplacian can be used to form a partitioning
of the nodes in a graph. In this example, nodes 4 and 5 are grouped into eigenvector 3,
nodes 1, 2, and 6 into eigenvectors 4 and 5, node 7 into eigenvector 2, and node 3 into
eigenvector 1 (Fig. 6.3). Note that for each partition the nodes in the partition are the
same; that is, we could swap the labels between nodes 4 and 5 and the network would
not change (i.e., an isomorphism). Eigenvector and eigenvalue 7, e7 and λ7 = 0, are
special and partition all the nodes in the network with the most central nodes having the
highest coefficients (see Table 6.1, Column 1). In general the number of eigenvalues
that are zero is equal to the number of components, arguably the most important
structural property in a graph. This graph contains one connected component and so
has a single zero eigenvalue (λ7). Note that the highest possible weighting in the WSD
is given at zero (i.e., 1 = 1 − 0); the number of components in the graph.

Note that the sum of the eigenvalues taken to the power of N is indeed the same
as the sum of the probabilities of taking N random walk cycles in the graph. This is
shown in Table 6.1, last row,

∑7
i=1(1 − λi)3 = 0.4667 which can be easily verified

by adding the cycle probabilities from Figure 6.3 (0.3333 + 0.1333 = 0.467). What
is interesting is how this sum is constructed. In Table 6.1, the main contributions to
the sum are from eigenvalues 1, 2, 3, and 6 (we ignore eigenvalue 7 as it merely
reflects that the graph is connected) which are dominated by the nodes which form
the cycles; 3, 4, 5, and 7.

However, this does not mean that the information provided by the WSD is confined
to N-cycles in the graph. For example in Figure 6.5, we take the edge linking nodes 1
and 3 and rewire it so that 1 and 6 are now connected. Note that while the right cycle
is still in place its probabilities have now changed, as the degree of node 3 is now 4.
The corresponding eigenvalues have also changed as seen in Figure 6.4.7

In conclusion, the WSD can roughly be seen as an amalgamation of local views
(i.e., walks of length N) taken from all the nodes. As (1 − λi) ≤ 1 ∀i, (1 − λi)N will

7Note that if we had used the adjacency matrix instead of the normalized Laplacian the rewiring would
have no effect on the sum of the eigenvalues.

www.it-ebooks.info

http://www.it-ebooks.info/

162 WEIGHTED SPECTRAL DISTRIBUTION

FIGURE 6.4 The second example network, G2.

FIGURE 6.5 WSD of the example network.

suppress the smaller eigenvalues more and more as N increases.8 We consider 3 and
4 to be suitable values of N for the current application: N = 3 is related to the well-
known and understood clustering coefficient; and N = 4 as a 4-cycle represents two
routes (i.e., minimal redundancy) between two nodes. For other applications, other

8This is closely related to the settling times in Markov chains, which are often expressed in terms of the
largest nontrivial eigenvalue. It differs in that the Walk Laplacian and not the normalized Laplacian is used.

www.it-ebooks.info

http://www.it-ebooks.info/

THE INTERNET AUTONOMOUS SYSTEM TOPOLOGY 163

values of N may be of interest. Also note that in Section 6.2, we propose using the
distribution of the eigenvalues for large networks; unfortunately it is not instructive
to talk about a distribution for a small number of eigenvalues (7 in this example).

6.4 THE INTERNET AUTONOMOUS SYSTEM TOPOLOGY

The Internet’s AS topology is a widely studied representation of the Internet at a
particular scale. An AS represents a single network that can apply its own operational
and peering policy. An Internet service provider (ISP) may use one or more ASes. The
Internet contains over 30,000 ASes, each in a set of relationships with its neighbors,
who are either its customers, providers, or peers. In the Internet core there is a full
mesh formed between the ASes of the various tier-1 ISPs. However, at the edge there
are a huge number of smaller ISPs and customer networks which connect through
upstream providers and local public exchange points. These smaller ISPs and customer
networks may have only one upstream provider, or may have many for resilience and
performance reasons. In addition, the Internet constantly evolves new networks are
added, old ones disappear, and existing ones grow and merge.

Links between ASes depend on business relationships which can and do change,
sometimes rapidly, making any interpretation of the Internet as a static structure
inaccurate. This rich and dynamic structure makes it difficult to provide either a
single, representative topological model, or a single graph metric that captures all
characteristics of any topology. However, such a metric would make it possible to
generate realistic synthetic topologies improving the accuracy of Internet-wide pro-
tocol simulations, and perhaps enabling the prediction of the future evolution of the
Internet’s topology.

Many attempts to capture one or more characteristics have been made, resulting in
several topology generators each of which synthesize Internet-like topologies using
different models and parameters. Unfortunately, validating these models is an ad hoc
matter that typically means matching several topological measures in the hope that
this will ensure a matching structure. Users often select default parameters for these
models based on specific datasets measured at particular times, which no longer
represent the current Internet. However, as noted previously, these measures cannot
be used to estimate the optimum parameters for a model given a target topology.

6.4.1 Characterization

Over the past several years many topological metrics have been proposed for quanti-
tatively characterizing topological properties of networks. In this section, we present
a large set of topological metrics that will be used to measure a distance in graph
space,9 that is, how topologically distant two graphs are from each other. These

9In Ref. [12] we present an even larger set of measures.

www.it-ebooks.info

http://www.it-ebooks.info/

164 WEIGHTED SPECTRAL DISTRIBUTION

metrics are computed for both synthetic and measured AS topologies. When choos-
ing our metrics we considered both those used by the topology generator designers
and those used more widely in the graph theory literature. Taken individually, these
metrics focus on different topological aspects, but when considered together they
reveal a more complete picture of the observed AS topologies.

We specifically chose not to use the three metrics of Tangmunarunkit et al. [13]
for two reasons. First, computation of resilience and distortion are both NP-complete,
requiring the use of heuristics. In contrast, all our metrics are straightforward to com-
pute directly. Second, although accurate reproduction of degree-based metrics is well
supported by current topology generators, our hypothesis is that local interconnectiv-
ity has been poorly understood, and so we add several metrics that focus on exactly
this, for example, assortativity, clustering, and centrality.

AS topologies are modeled as graphs G = (V, E) with a collection of nodes V and
a collection of links E that connect a pair of nodes. The number of nodes and links
in a graph is then equal to, respectively, N = |V | and M = |E|.

Degree. The degree k of a node is the number of links adjacent to it. The average
node degree k̄ is defined as k̄ = 2M/N. The node degree distribution P(k) is the
probability that a randomly selected node has a given degree k. The node degree
distribution is defined as P(k) = n(k)/N, where n(k) is the number of nodes of
degree k. The joint degree distribution (JDD) P(k, k′) is the probability that a
randomly selected pair of connected nodes have degrees k and k′. A summary
measure of the joint degree distribution is the average neighbor degree of nodes
with a given degree k, and is defined as follows knn(k) = ∑kmax

k′=1 k′P(k′|k). The
maximum possible knn(k) value is N − 1 for a maximally connected network,
that is, a complete graph. Hence, we represent the JDD by the normalized value
knn(k)/(N − 1) [14] and refer to it as average neighbor connectivity.

Assortativity. Assortativity is a measure of the likelihood of connection of nodes
of similar degrees [15]. This is usually expressed by means of the assorta-
tivity coefficient r: assortative networks have r > 0 (disassortative have r < 0
respectively) and tend to have nodes that are connected to nodes with similar
(dissimilar respectively) degree.

Clustering. Given node i with ki links, these links could be involved in at
most ki(ki − 1)/2 triangles (e.g., nodes a → b → c → a form a triangle). The
greater the number of triangles, the greater the clustering of this node. The clus-
tering coefficient γ(G) is defined as the average number of triangles divided by
the total number of possible triangles: γ(G) = 1/N

∑
i

Ti

ki(ki−1)/2 , ki ≥ 2 where
Ti is the number of triangles of node i and ki is its degree. We use the distri-
bution of clustering coefficients C(k), which in fact is the distribution of the
terms Ti

ki(ki−1)/2 in the overall summation. This definition of the clustering co-
efficient gives the same weight to each triangle in the network, irrespective of
the distribution of the node degrees.

Rich-Club. The rich-club coefficient φ(ρ) is the ratio of the number of links in
the component induced by the ρ largest-degree nodes to the maximum possible

www.it-ebooks.info

http://www.it-ebooks.info/

THE INTERNET AUTONOMOUS SYSTEM TOPOLOGY 165

links ρ(ρ − 1)/2, where ρ = 1, . . . , N are the first ρ nodes ordered by their
degree ranks in a network of size N nodes and ρ is normalized by the total
number of nodes N [16,17]. In this way, the node rank ρ denotes the position
of a node on this ordered list.

Shortest Path. The shortest path length distribution P(h) is the probability distri-
bution of two nodes being at minimum distance h hops from each other. From
the shortest path length distribution the average node distance in a connected
network is derived as h = ∑hmax

h=1 hP(h), where hmax is the longest shortest
path between any pair of nodes. hmax is also referred to as the diameter of a
network.

Centrality. Betweenness centrality is a measure of the number of shortest paths
passing through a node or a link. The node betweenness for a node v is B(v) =∑

s /=v /= t∈V
σst (v)
σst

, where σst is the number of shortest paths from s to t and σst(v)
is the number of shortest paths from s to t that pass through a node v [18]. The
average node betweenness is the average value of the node betweenness over
all nodes.

Closeness. Another measure of the centrality of a node within a network is its
closeness. The closeness of a node is the reciprocal of the sum of shortest paths
from this node to all other reachable nodes in a graph.

Coreness. The l-core of a network (sometimes known as the k-core) is the maximal
component in which each node has at least degree l. In other words, the l-core
is the component of a network obtained by recursively removing all nodes of
degree less than l. A node has coreness l if it belongs to the l-core but not to the
(l + 1)-core. Hence, the l-core is the collection of all nodes having coreness l.
The core of a network is the l-core such that the (l + 1)-core is empty [19].

Clique. A clique in a network is a set of pairwise adjacent nodes, that is, a compo-
nent which forms a complete graph. The top clique size, also known as the graph
clique number, is the number of nodes in the largest clique in a network [20].

Spectrum. It has recently been observed that eigenvalues are closely related to
almost all critical network characteristics [8]. For example, Tangmunarunkit
et al. [13] classified network resilience as a measure of network robustness
subject to link failures, resulting in a minimum balanced cut size of a network.
Spectral graph theory enables study of network partitioning using graph eigen-
values [8]. In this chapter, we focus on the spectrum of the normalized Laplacian
matrix, where all eigenvalues lie between 0 and 2, allowing easy comparison of
networks of different sizes. We use the normalized graph’s spectrum for tuning
the parameters of topology generators.

6.4.2 Generation

In this section, we present a number of topology generators, each having their own set
of parameters. We also present an example of an Internet AS topology dataset which
we use as a litmus test for the parameter tuning exercise.

www.it-ebooks.info

http://www.it-ebooks.info/

166 WEIGHTED SPECTRAL DISTRIBUTION

There are many models available that claim to describe the Internet AS topology.
Several of these are embodied in tools built by the community for generating simu-
lated topologies. In this section, we describe the particular models whose output we
compare in this chapter. The first are produced from the Waxman model [21], derived
from the Erdös–Rényi random graphs [22], where the probability of two nodes being
connected is proportional to the Euclidean distance between them. The second come
from the Barabasi and Albert (BA) [23] model, following measurements of various
power laws in degree distributions and rank exponents by Faloutsos et al. [24]. These
incorporate common beliefs about preferential attachment and incremental growth.
The third are from the generalized linear preference model [25] which additionally
model clustering coefficients. Finally, Inet [26] and PFP [17] focus on alternative
characteristics of AS topology the existence of a meshed core, and the phenomenon
of preferential attachment, respectively. Each model focuses only on particular metrics
and parameters, and has only been compared with selected AS topology observations
[13,26,27].

Waxman. The Waxman model of random graphs is based on a probability model
for interconnecting nodes of the topology given by

P(u, v) = αe−d/(βL) (6.17)

where 0 < α, β ≤ 1, d is the Euclidean distance between two nodes u and v,
and L is the network diameter, that is, the largest distance between two nodes.
Note that d and L are not parameters for the Waxman model. The Internet is
known not to be a random network but we include the Waxman model as a
baseline for comparison purposes.

BA. The BA [11] model was inspired by the idea of preferentially attaching new
nodes to existing well-connected nodes, leading to the incremental growth of
nodes and the links between them. Starting with a network of m0 isolated nodes,
m ≤ m0 new links are added with probability p. One end of each link is attached
to a random node, while the other end is attached to a node selected by preferring
the more popular, that is, well connected, nodes with probability

(ki) = ki + 1∑
j kj + 1

(6.18)

where kj is the degree of node j, with probability q, m links are rewired and new
nodes are added with probability 1 − p − q. A new node has m new links that,
with probability
(ki), are connected to nodes i already present in the system.
We use the BRITE [28] implementation of this model in this chapter.

GLP. Our third model is the generalized linear preference (GLP) model [25].
It focuses on matching characteristic path length and clustering coefficients.
It uses a probabilistic method for adding nodes and links recursively while
preserving selected power law properties. In the GLP model, when starting with
m0 links, the probability of adding new links is defined as p where p ∈ [0, 1].
Let
(di) be the probability of choosing node i. For each end of each link,

www.it-ebooks.info

http://www.it-ebooks.info/

THE INTERNET AUTONOMOUS SYSTEM TOPOLOGY 167

node i is chosen with probability
(di) defined as

(di) = (di − β)/
∑

j

(dj − β) (6.19)

where β ∈ (−∞, 1) is a tunable parameter indicating the preference of nodes
to connect to existing popular nodes. We use the BRITE implementation of this
model in this chapter.

Inet. Inet [26] produces random networks using a preferential linear weight for
the connection probability of nodes after modeling the core of the generated
topology as a full mesh network. Inet sets the minimum number of nodes at
3037, the number of ASes on the Internet at the time of Inet’s development. By
default, the fraction of degree 1 nodes α is set to 0.3, based on measurements
from Routeviews10 and NLANR11 BGP table data in 2002.

PFP. In the positive feedback preference (PFP) model [17], the AS topology of
the Internet is considered to grow by interactive probabilistic addition of new
nodes and links. It uses a nonlinear preferential attachment probability when
choosing older nodes for the interactive growth of the network, inserting edges
between existing and newly added nodes. As the PFP generator does not have
any user-tunable parameters we include it only in the last part of Section 6.6
for completeness.

6.4.3 Observations

The AS topology can be inferred from two main sources of data, BGP and traceroutes,
both of which suffer from measurement artifacts. BGP data is inherently incomplete
no matter how many vantage points are used for collection. In particular, even if
BGP updates are combined from multiple vantage points, many peering and sibling
relationships are not observed [29]. Traceroute data misses alternative paths since
routers may have multiple interfaces which are not easily identified, and multihop
paths may be hidden by tunnelling via multiprotocol label switching (MPLS). In
addition, mapping traceroute data to AS numbers is often inaccurate [30].

Chinese. The first dataset is a traceroute measurement of the Chinese AS Topology
collected from servers within China in May 2005. It reports 84 ASs, representing
a small subgraph of the Internet. Zhou et al. [31] claim that the Chinese AS
graph exhibits all the major topology characteristics of the global AS graph.
The presence of this dataset enables us to compare the AS topology models
at smaller scales. Further, this dataset is believed to be nearly complete, that
is, it contains very little measurement bias and accurately represents the AS
topology of that region of the Internet. Thus, although it is rather small, we
have included it as a valuable comparison point in our studies.

10http://www.routeviews.org/
11http://www.nlanr.net/

www.it-ebooks.info

http://www.it-ebooks.info/

168 WEIGHTED SPECTRAL DISTRIBUTION

Skitter. The second dataset comes from the CAIDA Skitter project.12 By running
traceroutes toward a large range of IP addresses and subsequently mapping the
prefixes to AS numbers using RouteViews BGP data, CAIDA computes an
observation of the AS topology. For our study, we use the graphs from March
2004 to match those used by Mahadevan et al. [14]. This AS topology reports
9204 unique ASs.

RouteViews. The third dataset we use is derived from the RouteViews BGP data.
This is collected both as static snapshots of the BGP routing tables and dynamic
BGP data in the form of BGP update and withdrawal messages. We use the
topologies provided by Mahadevan et al. [14] from both the static and dynamic
BGP data from March 2004. The dataset is produced by filtering AS sets and
private ASs and merging the 31 daily graphs into one. This dataset reports
17,446 unique ASs across 43 vantage points in the Internet.

UCLA. The fourth dataset comes from the Internet topology collection13 main-
tained by Oliveira et al. [32]. These topologies are updated daily using BGP rout-
ing tables and updates from RouteViews, RIPE,14 Abilene,15 and LookingGlass
servers. We use a snapshot of this dataset from November 2007, computed using
a time window on the last-seen timestamps to discard ASs which have not been
seen for more than 6 months. The resulting dataset reports 28,899 unique ASs.

6.5 COMPARING TOPOLOGY GENERATORS

Most past comparisons of topology generators have been limited to the average node
degree, the node degree distribution and the joint degree distribution. The rationale
for choosing these metrics is that if those properties are closely reproduced then the
value of other metrics will also be closely reproduced [33].

In this section, we show that current topology generators are able to match first and
second order properties well, that is, average node degree and node degree distribution,
but fail to match many other topological metrics. We also discuss the importance of
various metrics in our analysis.16

6.5.1 Methodology

For each generator, we specify the required number of nodes and generate
10 topologies of that size to provide confidence intervals for the metrics. We then
compute the metrics introduced in Section 6.4 on both the generated and observed
AS topologies. All topologies studied in this chapter are undirected, preventing us

12http://www.caida.org/tools/measurement/Skitter/
13http://irl.cs.ucla.edu/topology/
14http://www.ripe.net/db/irr.html
15http://abilene.internet2.edu/
16We present an extended set of metrics in Ref. [12] which further support our claims; we restrict ourselves
here to only the most significant results.

www.it-ebooks.info

http://www.it-ebooks.info/

COMPARING TOPOLOGY GENERATORS 169

from considering peering policies and provider–customer relationships. This limita-
tion is forced upon us by the design of the generators as they do not take such policies
into account.

Each topology generator uses several parameters, all of which could be tuned to
best fit a particular size of topology. However, there are two problems with attempting
this tuning. First, doing so requires selecting an appropriate goodness-of-fit measure,
of which there are many as noted in Section 6.4. Second, in any case tuning parameters
to a particular dataset is of questionable merit since, as we argued in Section 6.1, each
dataset is but a sample of reality, having many biases and inaccuracies. Typically,
topology generator parameters are tuned to match the number of links in the synthetic
and measured networks for a given number of nodes. However, we found this to be
infeasible as generating graphs with equal numbers of links from a random model and
a power–law model gives completely different outputs. For space reasons, we deal
with this particular issue elsewhere [34]; in this chapter, we simply use the default
values embedded within each generator.

6.5.2 Topological Metrics

In this section, we discuss the results for each metric separately and analyze the
reasons for differences between the observed and the generated topologies.

Table 6.2 displays the values of various metrics (columns) computed for different
topologies (rows). Blocks of rows correspond to a single observed topology and the
generated topologies with the same number of nodes as the observed topology. Bold
numbers represent nearest match of a metric value to that for the relevant observed
topology. Rows in each block are ordered with the observed topology first, followed
by the generated topologies from oldest to newest generator. For synthetic topologies,
the value of the metrics is averaged over the 10 generated instances. Note that Inet
requires the number of nodes to be greater than 3037 and hence cannot be compared
to the Chinese topology.

We observe a small but measurable improvement from older to newer generators
in some metrics such as maximum degree, maximum coreness, and assortativity
coefficient. This suggests that topology generators have successively improved at
matching particular properties of the observed topologies. However, the number of
links in the generated topologies may differ considerably from the observed topology
due to the assumptions made by the generators. The Waxman and BA generators
fail to capture the maximum degree, the top clique size, maximum betweenness, and
coreness. Those two generators are too simplistic in the assumptions they make about
the connectivity of the graphs to generate realistic AS topologies. Waxman relies
on a random graph model which cannot capture the clique between tier-1 ASes or
the heavy tail of the node degree distribution. BA tries to reproduce the power–law
node degrees with its preferential attachment model but fails to reach the maximum
node degree, as it only adds edges between new nodes and not between existing ones.
Hence, neither of these two models is able to create the highly connected core of
tier-1 ASes. PFP and Inet manage to come closer to the values of the metrics of the
observed topologies. For Inet this is because it assumes that 30% of the nodes are

www.it-ebooks.info

http://www.it-ebooks.info/

T
A

B
L

E
6.

2
C

om
pa

ri
so

n
of

A
S

L
ev

el
D

at
as

et
w

it
h

Sy
nt

he
ti

c
To

po
lo

gi
es

To
po

lo
gy

L
in

ks
A

vg
.D

eg
re

e
M

ax
.

To
p

C
liq

ue
M

ax
.

M
ax

.
A

ss
or

t.
C

lu
st

.
M

ax
.

D
eg

re
e

Si
ze

B
et

w
ee

nn
es

s
C

or
en

es
s

C
oe

f.
C

oe
f.

C
lo

se
ne

ss

C
hi

ne
se

21
1

5.
02

38
2

1,
32

4
5

−0
.3

2
0.

18
8

<
0.

01
W

ax
m

an
25

2
6

18
2

40
4

4
0.

03
9

0.
11

7
0.

50
6

B
A

16
5

3.
93

19
3

1,
09

6
2

−0
.0

96
0.

07
3

0.
51

5
G

L
P

15
1

3.
6

44
3

2,
39

1
5

−0
.2

57
0.

11
9

0.
64

3
PF

P
25

0
5.

95
37

10
84

9
9

−0
.3

8
0.

30
9

0.
63

8

Sk
it

te
r

28
,9

59
6.

3
2,

07
0

16
10

,2
10

,5
33

28
−0

.2
3

0.
02

6
<

0.
01

W
ax

m
an

27
,6

12
6

33
0

47
4,

67
3

4
0.

20
5

0.
00

2
0.

26
4

B
A

18
,4

05
4

19
0

0
5,

91
8,

22
6

2
−0

.0
5

0.
00

1
0.

31
5

G
L

P
16

,7
44

3.
64

2,
41

1
2

34
,8

53
,5

44
5

−0
.0

89
0.

00
3

0.
49

6
IN

E
T

18
,5

04
4.

02
1,

68
3

3
15

,0
37

,6
31

7
−0

.1
95

0.
00

4
0.

51
4

PF
P

27
,6

11
6

3,
00

0
16

13
,3

55
,1

94
24

−0
.2

44
0.

01
2

0.
58

8

R
ou

te
Vi

ew
s

40
,8

05
4.

7
2,

49
8

9
30

,1
71

,0
51

28
−0

.1
9

0.
02

<
0.

01
W

ax
m

an
52

,3
36

6
35

0
1,

18
5,

68
7

4
0.

20
5

0.
00

1
0.

25
B

A
34

,8
89

4
39

2
3

33
,1

78
,6

69
2

−0
.0

4
0.

00
1

0.
33

G
L

P
31

,3
91

3.
6

4,
22

6
4

12
7,

54
7,

25
6

6
−0

.0
8

0.
00

2
0.

48
IN

E
T

43
,3

43
4.

97
2,

82
8

6
31

,2
67

,6
07

14
−0

.2
58

0.
00

6
0.

52
2

PF
P

52
,3

38
6

4,
59

3
23

39
,0

37
,7

35
30

−0
.2

52
0.

00
9

0.
56

4

U
C

L
A

11
6,

27
5

8.
05

4,
39

3
10

76
,8

82
,7

95
73

−0
.1

65
0.

05
0.

32
W

ax
m

an
86

,6
97

6
40

0
3,

38
4,

11
4

4
0.

21
3

<
0.

00
1

0.
24

6
B

A
57

,7
95

4
34

7
0

52
,0

23
,2

88
2

−0
03

<
0.

00
1

0.
3

G
L

P
52

,4
56

3.
63

7,
39

1
2

37
1,

65
1,

14
7

6
−0

.0
8

<
0.

00
1

0.
48

6
IN

E
T

91
,0

52
6.

3
6,

53
7

12
88

,0
52

,3
16

38
−0

.3
0.

01
0.

55
PF

P
86

,6
96

6
8,

07
6

26
12

3,
49

0,
67

6
40

−0
.2

18
0.

01
0.

57

170

www.it-ebooks.info

http://www.it-ebooks.info/

COMPARING TOPOLOGY GENERATORS 171

0.01

0.1

 1

1 10

P
(X

<
x)

P
(X

<
x)

Chinese (n=84)
Waxman

BA
GLP
PFP

0.001

0.01

0.1

1
Skitter (n=9,204)

Waxman
BA

GLP
PFP

INET

0.001

0.01

0.1

1

1 10 100 1,000

P
(X

<
x)

P
(X

<
x)

Node degree

RouteViews (n=17,446)
Waxman

BA
GLP
PFP

INET

0.001

0.01

0.1

1

1 10 100 1,000

1 10 100 1,000

Node degree

UCLA (n=28,899)
Waxman

BA
GLP
PFP

INET

FIGURE 6.6 Comparison of node degree CCDFs.

fully meshed (at the core), whereas for PFP its rich-club connectivity model allows
to add edges between existing nodes.

Node Degree Distribution. In Figure 6.6, we show the CCDF of the node degree
for all topologies on a log–log scale. We observe that the Chinese topology does
not exhibit power–law scaling due to its limited size, whereas all the larger AS
topologies do exhibit power–law scaling of node degrees. The Waxman gener-
ator completely fails to capture this behavior as it is based on a random graph
model, but recent topology generators do capture this power–law behavior of the
node degrees quite well, as observed in Ref. [25]. In the case of the RouteViews
and UCLA datasets, Inet and PFP outperform other topology generators. Note
that the more complete UCLA dataset has a slightly concave shape in contrast to
RouteViews where the degree distribution displays strict power–law scaling. In
summary, more recent generation models reproduce node degree distributions
well as expected since this has been a primary focus in the literature.

Average Neighbor Connectivity. Neighbor connectivity has been far less studied
than node degree, although it is very important to match local interconnection
among a node’s neighbors when reproducing the topological structure of the
Internet [14]. Figure 6.7 shows the CCDF of the average neighbor degrees

www.it-ebooks.info

http://www.it-ebooks.info/

172 WEIGHTED SPECTRAL DISTRIBUTION

0.2

0.4

0.6

0.8

1

 0.1 1

Chinese (n=84)
Waxman

BA
GLP
PFP

 0.001 0.01 0.1 1

Skitter (n=9,204)
Waxman

BA
GLP
PFP

INET

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1

P
(X

<
x)

P
(X

<
x)

Average neighbor degree

RouteViews (n=17,446)
Waxman

BA
GLP
PFP

INET

0.001 0.01 0.1 1

Average neighbor degree

UCLA (n=28,899)
Waxman

BA
GLP
PFP

INET

FIGURE 6.7 Comparison of average neighbor connectivity CCDFs.

for all topologies. We observe that Waxman, BA, and GLP underestimate the
local interconnection structures around nodes. BA and GLP typically generate
graphs with far fewer links than the observed topologies so they underestimate
neighbor degrees on average.

For the larger observed topologies, that is, RouteViews and UCLA, PFP,
and Inet typically overestimate the neighbor connectivity, as they both place
a large number of inter-AS links in the core. In addition, the shapes of the
neighbor connectivity CCDF differ for the larger topologies: Inet and PFP
have two regimes, one for highly connected nodes (those with larger neighbor
connectivity), and another for low-degree nodes. On the other hand, observed
topologies have a smooth region for the high-degree nodes followed by a rather
stable region caused by similar degree nodes. We observe that the highest degree
nodes in the UCLA topology have very high values of neighbor connectivity.
This is consistent with the belief that tier-1 providers are densely meshed.

Clustering Coefficients. Like the average neighbor connectivity, the clustering co-
efficient gives information about local connectivity of the nodes. It is important
to reproduce clustering due to its impact on the local robustness in the graph:
nodes with higher local clustering have increased local path diversity [14].

Figure 6.8 displays the clustering coefficients of all nodes in the topologies.
Error bars indicate 95% confidence intervals around the mean values of the

www.it-ebooks.info

http://www.it-ebooks.info/

COMPARING TOPOLOGY GENERATORS 173

0

0.2

0.4

0.6

0.8

1 10 100

C
lu

st
er

in
g

co
ef

fic
ie

nt
s Chinese (n=84)

Waxman
BA

GLP
PFP

1 10 100 1,000

Skitter (n=9,204)
Waxman

BA
GLP
PFP

INET

0

0.2

0.4

0.6

0.8

1 10 100 1,000

C
lu

st
er

in
g

co
ef

fic
ie

nt
s

Node degree

RouteViews (n=17,446)
Waxman

BA
GLP
PFP

INET

1 10 100 1,000

Node degree

UCLA (n=28,899)
Waxman

BA
GLP
PFP

INET

FIGURE 6.8 Comparison of clustering coefficients.

10 topologies from each generator. We observe that Waxman and BA sig-
nificantly underestimate clustering, consistent with their simplistic way of con-
necting nodes. GLP approximates the clustering of the Chinese topology quite
well but fails in the case of the larger observed topologies. PFP and Inet capture
clustering reasonably well compared to the other topology generators. However,
Inet does not reproduce the tail of the distribution well due to the randomness
factor in its model for edge addition once the core is fully meshed.

We also observe that for medium degree nodes, clustering coefficients dis-
play rather high variability which increases with the size of the observed topolo-
gies. This behavior seems to be a property of the observed AS topology of the
Internet.

In summary, all topology generators fail to properly capture clustering, typ-
ically underestimating local connectivity. Only Inet for the UCLA topology
overestimates connectivity of low-degree nodes while still underestimating it
for high-degree nodes. Current topology generators do not seem to adequately
model local node connectivity.

Rich-Club Connectivity. Rich-club connectivity gives information about how well-
connected nodes of high degree are among themselves. Figure 6.9 makes it
clear that the cores of the observed topologies are very close to a full mesh,
with values close to 1 on the left of the graphs. The error bars again indicate

www.it-ebooks.info

http://www.it-ebooks.info/

174 WEIGHTED SPECTRAL DISTRIBUTION

0

0.2

0.4

0.6

0.8

1

0.1 1

R
ic

h-
cl

ub
 c

oe
ffi

ci
en

ts

Chinese (n=84)
Waxman

BA
GLP
PFP

0.001 0.01 0.1 1

Skitter (n=9,204)
Waxman

BA
GLP
PFP

INET

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1

R
ic

h-
cl

ub
 c

oe
ffi

ci
en

ts

Normalized node rank

RouteViews (n=17,446)
Waxman

BA
GLP
PFP

INET

0.001 0.01 0.1 1

Normalized node rank

UCLA (n=28,899)
Waxman

BA
GLP
PFP

INET

FIGURE 6.9 Comparison of rich-club connectivity coefficients

the 95% confidence intervals around the mean values of the different instances
of the generated topologies. Waxman and BA perform poorly for this metric
in general. Only PFP and Inet generate topologies with a dense enough core
compared to the observed topologies. Given the emphasis that PFP gives to
the rich-club connectivity, it overestimates it in the case of the Chinese and
RouteViews topologies. Inet performs well due to its emphasis on a highly
connected core, especially for larger topologies where data has been collected
across multiple peering points.

In summary, most topology generators underestimate the importance of
rich-club connectivity of the AS topology. PFP is the only topology genera-
tor that emphasizes the importance of the dense core of the AS topology.

Shortest Path Distributions. Figure 6.10 displays the distributions of shortest path
length. Apart from BA, most topology generators approximate the shortest path
length distribution of the Chinese graph quite well due to its small size. For the
other topologies, PFP and Inet generally underestimate the path length distri-
bution while Waxman and BA overestimate it. Particular generators seem to
capture the path length distribution for particular topologies well, PFP matches
Skitter’s well and GLP is close for Routeviews. Inet and PFP both do a better
job for UCLA than for RouteViews but both still underestimate the distribution.

www.it-ebooks.info

http://www.it-ebooks.info/

COMPARING TOPOLOGY GENERATORS 175

0

0.2

0.4

0.6

 0.8

1

P
D

F

Chinese (n=84)
Waxman

BA
GLP
PFP

Skitter (n=9,204)
Waxman

BA
GLP
PFP

INET

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

P
D

F

Hop count

Route Views (n=17,446)
Waxman

BA
GLP
PFP

INET

0 2 4 6 8 10 12

Hop count

UCLA (n=28,899)
Waxman

BA
GLP
PFP

INET

FIGURE 6.10 Comparison of shortest path distributions (number of hops).

In summary, shortest path length is not well captured by any topology gen-
erator. As shortest path length is related to local connectivity, failing to capture
local connectivity is likely to lead to such a behavior.

Spectrum. The spectrum of the normalized Laplacian matrix is a powerful tool
for characterizing properties of a graph. If two graphs have the same spectrum,
they have the same topological structure.

Figure 6.11 displays the CDF of the eigenvalues computed from the normalized
Laplacian matrix of each topology.

As with other topological metrics, Inet and PFP perform best. The difference
between the topology generators is most easily observed around the eigenvalues equal
to 1. These eigenvalues play a special role as they indicate repeated duplications of
topological patterns within the network. By duplication, we mean different nodes
having the same set of neighbors giving their induced subgraphs the same structure.
Through repeated duplication, one can create networks with high multiplicity of
eigenvalue 1 [35]. Further, if a network is bipartite, that is, it consists of two connected
parts with no links between nodes of the same part, then its spectrum will be symmetric
around 1. This phenomenon can also arise through repeated structure duplication.

We observe that the spectra have a high degree of symmetry around the
eigenvalue 1, and so the observed AS topologies appear close in spectral terms to
a bipartite graph. In the AS topology, many ASes share a similar set of upstream

www.it-ebooks.info

http://www.it-ebooks.info/

176 WEIGHTED SPECTRAL DISTRIBUTION

0

0.2

0.4

0.6

0.8

1

C
D

F

0 0.5 1 1.5 2

Eigenvalue

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Eigenvalue

C
D

F

Skitter

Waxman

BA

GLP

INET

PFP

Chinese

Waxman

BA

GLP

PFP

UCLA

BA

GLP

INET

PFP

RouteViews

Waxman

BA

GLP

INET

PFP

FIGURE 6.11 Comparison of cumulative distributions of eigenvalues (from normalized
Laplacian).

ASes without being directly connected to each other. Inet and PFP are good examples
of topology generators where this strategy is implemented. Note that the simple pref-
erential attachment model of BA does not reproduce the eigenvalues around 1 very
well. In the simple BA model, new nodes connect randomly to a given number of
existing nodes, favoring connections to high degree nodes. In the Internet in contrast,
although small ASes may tend to connect to large upstream providers, they might not
connect preferentially to the largest ones, connecting instead to national or regional
providers. In summary, these results provide further evidence that the interconnection
structure of the AS topology is more complex than current models assume.

6.5.3 Discussion

Deviations between topology models and observations have been already studied
in the literature. However, most works so far have focused on particular topological
metrics. Concentrating on particular topological metrics has lead to underestimate the
mismatch between the properties of observed AS topologies and what current models
produce. When comparing several models with several observed AS topologies as we
do, we see that current topology models mostly try to capture some properties of one

www.it-ebooks.info

http://www.it-ebooks.info/

TUNING TOPOLOGY GENERATOR PARAMETERS 177

set of observations from the AS topology. For a topology model to claim to model
the Internet’s AS topology, we would expect that it tries to approach the properties of
observed AS topologies in many respects, which is not the case today.

6.6 TUNING TOPOLOGY GENERATOR PARAMETERS

The aim of this section is to examine how well the topology generators match the
Skitter topology for different values of their parameters. To facilitate this comparison,
grids are constructed over the possible values of the parameter spaces and various cost
functions are evaluated as follows:

1. A cost function measuring the matching between the number of links in Skitter
and the generated topologies

C1(θ) = (lt(θ) − lSkitter)
2 (6.20)

where C1 is the first cost function, θ are the model parameters (which differ for
each topology generator), lt is the number of links (which is a function of the
parameters), and lSkitter is the number of links in the Skitter dataset.

2. A cost function measuring the matching between the spectra of the Skitter
network and of the generated topologies

C2(θ) =
∑
k∈K

(ft(λ = k) − fSkitter(λ = k))2 (6.21)

where ft(λ = k) is the number of eigenvalues that fall in bin k for topology t.
Note that ft(λ = k) is dependant on θ.

3. A cost function measuring the matching of the weighted spectral distributions

C3(θ) =
(Gt, GSkitter, N) (6.22)

as defined in Equation 6.16. Here, N = 4 is used.

In addition to examining different parameter values across a grid, the optimum
parameters with respect to C3(θ) are estimated using the Nelder Meade simplex search
algorithm [36,37]. Note that the topologies generated by the topology generators are
random in a statistical sense, due to differing random seeds for each run. Ten topologies
are generated for each value of θ and the average spectral distribution is calculated.
We found that the variance of the spectral distributions was sufficiently low to allow
reasonable estimates of the minima in each case.

6.6.1 Link Densities

Figure 6.12 displays the value of the cost function C1(θ) as a function of the topology
generator parameters. On the upper and lower left graphs, the grayscale color indicates

www.it-ebooks.info

http://www.it-ebooks.info/

178 WEIGHTED SPECTRAL DISTRIBUTION

α

β

0.02 0.04 0.06 0.08 0.1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
(a)

p

q

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Exponential

Scale free

(b)

p

β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

9
x 107

p

Li
nk

 c
os

t f
un

ct
io

n

(d)

FIGURE 6.12 Topology generator parameter grid for sum-squared error from number of
links. (a) Waxman. (b) BA. (c) GLP. (d) Inet.

the value of the cost function. For Inet there is only one parameter, p, so it is plotted as
a curve in Figure 6.12d. Figure 6.12 shows that a minimum exists for each topology in
approximately the same regions as the default values of each generator.17 For the BA
generator, it is known that for values of p and q above the line shown in Figure 6.12b,
the topologies generated follow an exponential node degree distribution while those
below follow a scale-free distribution. It is encouraging to note that the values of
C1(θ) are large in the exponential region and the minimum is in the scale-free region
as the node degree distribution of the Internet is known to be approximately scale
free [11]. Overall the results obtained by tuning the parameters based on C1(θ) appear
reasonable. For link density matching it is possible to obtain parameter values which
match the link densities exactly. Indeed, there is a ridge of parameters for BA, GLP,
and Waxman for which the link densities can be matched. However, as noted in the
introduction, there is no control over any other characteristic of the graph using this
method.

17Some of these default values are listed in Table 6.3.

www.it-ebooks.info

http://www.it-ebooks.info/

TUNING TOPOLOGY GENERATOR PARAMETERS 179

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
(Λ

 =
 λ

)
P

(Λ
 =

 λ
)

P
(Λ

 =
 λ

)
P

(Λ
 =

 λ
)

λ λ

λλ

Waxman(0.04,0.03)

Waxman(0.05,0.05)

Waxman(0.08,0.08)

Skitter

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

BA2(0.70,0.05)

BA2(0.35,0.35)

BA2(0.05,0.70)

Skitter

(a) (b)

(d)(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

GLP(0.70,−0.04)

GLP(0.40,−0.10)

GLP(0.10,0.20)

Skitter

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

INET(0.05)

INET(0.50)

INET(0.85)

Skitter

FIGURE 6.13 PDF of spectra. (a) Waxman. (b) BA. (c) GLP. (d) Inet.

6.6.2 Spectra PDF

Figure 6.13 shows the spectral PDF of the Skitter dataset and the four topology gen-
erators calculated at three parameters values in each grid (the parameter values are
indicated in brackets in the legends). The aim is to illustrate how much the spec-
tral PDFs change with the values of the parameters. The spectral PDFs of Waxman
(Fig. 6.13a) vary significantly for different values of α and β. Furthermore, none of
the Waxman PDFs match well with the spectral PDF of the Skitter graph. The BA
PDFs vary to a lesser extent (Fig. 6.13b) and appear to give a much better match than
the Waxman model, especially around eigenvalue 1 (λ = 1). This better match of BA
is not surprising as the Waxman model is not a good model for the Internet as noted
in Section 6.5. GLP (Fig. 6.13c) and Inet (Fig. 6.13d) give similar results to BA, with
a poor match outside eigenvalue 1. The better match of the BA model around eigen-
value 1 is interesting. As noted in Section 6.2 the regions away from eigenvalue 1
are far more important than the region around λ = 1. However, what is required is
a technique that reveals the differences with distance from one as these are more
important. Thus, it would appear difficult to evaluate which model, or even which

www.it-ebooks.info

http://www.it-ebooks.info/

180 WEIGHTED SPECTRAL DISTRIBUTION

parameter, is better based on the PDFs alone. This point is now further explored by
analysis of the grids calculated with respect to C2(θ).

6.6.3 Limitations of Spectra PDF

Figure 6.14 shows the value of the second cost function C2(θ) as a function of the
topology generator parameters, in the same way as Figure 6.12. As can be seen in
Figure 6.14, there are many islands corresponding to local minima, creating a rugged
landscape. The variance in the PDFs referred to in this section is actually greater than
any gradient that might exist in the grid. This means that it is not possible to estimate
the minimum with respect to C2(θ). Figure 6.14 shows that the spectrum on its own is
not sufficient to identify the optimum parameters of any of the topology generators.
This is because each eigenvalue in C2(θ) is weighted equally. As noted in Section 6.2,
the eigenvalues close to 1 are more likely to be affected by the random seeds for each
topology generator and are the source of the noise on the grid.

α

β

0.02 0.04 0.06 0.08 0.1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
(a) (b)

(d)(c)

p

q

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p

β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8
x 10−6

p

C
D

F
 c

os
t f

un
ct

io
n

FIGURE 6.14 Parameter grid for sum of absolute differences of spectra CDFs. (a) Waxman.
(b) BA. (c) GLP. (d) Inet.

www.it-ebooks.info

http://www.it-ebooks.info/

TUNING TOPOLOGY GENERATOR PARAMETERS 181

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03

(1
 −

 λ
)4

(1
 −

 λ
)4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
(a) (b)

(d)(c)

λλ

(1
 −

 λ
)4

(1
 −

 λ
)4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

λ λ
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.002

0.004

0.006

0.008

0.01

0.012

Waxman(0.04,0.03)

Waxman(0.05,0.05)

Waxman(0.08,0.08)

Skitter

BA2(0.70,0.05)

BA2(0.35,0.35)

BA2(0.05,0.70)

Skitter

GLP(0.70,−0.04)

GLP(0.40,−0.10)

GLP(0.10,0.20)

Skitter

INET(0.05)

INET(0.50)

INET(0.85)

Skitter

FIGURE 6.15 Weighted spectra grid for generator parameters. (a) Waxman. (b) BA. (c) GLP.
(d) Inet.

6.6.4 Weighted Spectra

The previous section illustrated the limitations of using the raw eigenvalues to find
optimal topology generator parameters to match the Skitter topology. Figure 6.15
shows a plot of the weighted spectra of the same topologies as those shown in
Figure 6.13. As can be seen the results are quite different from those shown in Fig-
ure 6.13. The Waxman weighted spectra still shows a bad fit with respect to the Skitter
data (mainly around 0 and 2) compared to the other generators. The other generators
(BA, GLP, and Inet) now show that they are capable of matching the weighted spec-
tra of the Skitter topology, especially around the point of greatest weight (λ = 0.4
or 1.6). The difference between the weighted spectra around 1 is no longer of im-
portance (in contrast to Fig. 6.13), reflecting that the weights here approach zero as
we approach eigenvalue 1. In the next section, the optimum values and the resulting
weighted spectra will be compared.

6.6.5 Weighted Spectra Comparison

Figure 6.16 shows the grids associated with C3(θ). As can be seen the grids show that
there is a region with a minima in each case and in addition, comparing Figures 6.16

www.it-ebooks.info

http://www.it-ebooks.info/

182 WEIGHTED SPECTRAL DISTRIBUTION

α

β

0.02 0.04 0.06 0.08 0.1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p

β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a)

(c)

q

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Exponential

Scale free

(b)

p

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p

D
is

cr
ep

an
cy

 d
is

ta
nc

e

FIGURE 6.16 Grid of sum-squared error of weighted spectra for topology generators.
(a) Waxman. (b) BA. (c) GLP. (d) Inet.

and 6.12 it can be seen that these minima lie in a region close to those for C1(θ).
However, it should be noted that the weighted spectra will try to fit more than just
the number of links in a topology. This demonstrates the inherent trade-off. Also of
note is that the region of interest for the BA model lies inside the region of scale-free
behavior as shown in Figure 6.16b.

6.7 GENERATING TOPOLOGIES WITH OPTIMUM PARAMETERS

Table 6.3 displays the optimum values for the topology generators for generating
networks that are close to the Skitter graph. In addition, we give the values for C3(θ),
which show that PFP gives the closest fit followed by BA, GLP, Waxman, and finally
Inet. While these results are mostly expected, the ranking of Inet as the worst topology
generator is surprising. We have also listed some of the default parameters used in
certain generators such as BRITE [28]. While many of the optimized parameters are
close to the default values, which is encouraging, it should be noted that the default
parameters are for a typical graph and are not selected for any particular situation.
Thus, a direct comparison is meaningless.

www.it-ebooks.info

http://www.it-ebooks.info/

GENERATING TOPOLOGIES WITH OPTIMUM PARAMETERS 183

TABLE 6.3 Optimum Parameter Values for Matching Skitter Topology

Generator Optimum and Default Parameter Values C3(θ) C3(θ)

Waxman α = 0.08 (def. 0.15) β = 0.08 (def. −0.2) 0.0026 0.0797
BA p = 0.2865 (def. 0.6) q = 0.3145 (def. 0.3) 0.0014 0.0300

GLP p = 0.5972 (def. 0.45) β = 0.1004 (def. 0.64) 0.0021 0.0446
Inet α = 0.1013 (def. 0.3) – 0.0064 0.0150
PFP – – 0.0014 0.0371

Figure 6.17a shows the weighted spectra for each of the topology generators and
inspection of the figure goes some way to explaining the discrepancy in the results.
As can be seen the main peak in the weighted spectra for the Skitter data occurs at
a value of λ = 0.4. The Waxman generator peak occurs at λ = 0.6 which is closer to
1 demonstrating the greater amount of random structure in the Waxman topologies.
However, for the Inet generator the peak occurs at the correct point (λ = 0.4) but the
weighted power at this point is far greater than in the Skitter topology. By normalizing
the weighted spectrum this point becomes clear

C3(θ) =
∑
k∈K

(1 − k)N (ft(λ = k))

ω(Gt)
− (f2(λ = k))2

ω(GSkitter)
(6.23)

where ω(G) is the total power in the WSD as defined in Equation 6.14. Using the
normalized weighted spectrum the results in Figure 6.17b show that Inet is the best
match for the Skitter data while the Waxman model still performs worse than the
other models. Further research is required before stating which version of C3 is
superior.

Figure 6.18 shows a comparison of the optimized topologies with respect to four
typical network metrics: the node degree distribution, the average neighbor connectiv-
ity, the clustering coefficient, and the rich-club connectivity [17]. As can be seen PFP

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
(Λ

 =
 λ

)

P
(Λ

 =
 λ

)

λ λ

Skitter
Waxman
GLP
BA2
INET
PFP

(a) (b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Skitter
Waxman
GLP
BA2
INET
PFP

FIGURE 6.17 Comparison of the weighted spectra. (a) Weighted spectra. (b) Normalized
weighted spectra.

www.it-ebooks.info

http://www.it-ebooks.info/

184 WEIGHTED SPECTRAL DISTRIBUTION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 10 100 1000

C
lu

st
er

in
g

co
ef

fi
ci

en
ts

Node degree

Waxman
BA

GLP
Inet
PFP

Skitter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1

R
ic

h-
cl

ub
 c

oe
ff

ic
ie

nt
s

Normalized rank r/N

Waxman
BA

GLP
Inet
PFP

Skitter

(c) (d)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

 P
(X

<
x)

 P
(X

<
x)

Node degree

Waxman
BA

GLP
Inet
PFP

Skitter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1

Average neighbor degree rank

Waxman
BA

GLP
Inet
PFP

Skitter

(a) (b)

FIGURE 6.18 Comparison of topology generators and Skitter topology. (a) Node degree
distribution. (b) Average neighbor connectivity. (c) Clustering coefficients. (d) Rich-Club con-
nectivity.

gives the best match for these metrics in agreement with our proposed metric C3(θ).
The performance of the other topologies is mixed showing that while one topology
is able to match one metric it fails to match another. For example, the GLP generator
achieves a reasonable match for the node degree distribution but fails to match the
average neighbor connectivity. It is interesting to note that BA does not match the
rich-club connectivity which is not evident in our metric.

6.8 INTERNET TOPOLOGY EVOLUTION

The WSD produces a mapping from 	M×M �−→ 	|K|, where |K| = 71 bins are used
in the examples in this section. However, a 71 dimensional space is still too large to
effectively visualize clustering across graphs. In this section, we introduce multidi-
mensional scaling (MDS), a technique mapping the WSD into a lower dimension.

Specifically, given C different graphs we seek a mapping from their WSD’s into an
l dimensional space: 	C×|K| �−→ 	C×l where l << |K|. Typically l = 2 or 3 makes

www.it-ebooks.info

http://www.it-ebooks.info/

INTERNET TOPOLOGY EVOLUTION 185

visual inspection most straightforward. Note that the methods used are parameter-free
and so a natural clustering of the data is sought, as opposed to a supervised method
which applies a mapping learned from training data.

Multidimensional scaling [38] is a technique mapping distances between objects
into a reduced dimensional space. An intuitive example involves taking the distance
matrix commonly shown in the bottom corner of many road maps and using it to re-
construct the map itself. The technique uses distance between the graphs here defined
in terms of the metric introduced in Equation 6.16,
(G1, G2, N). First, a dissimilarity
matrix, R, is constructed as

R(i,j) =
⎧⎨
⎩

(Gi, Gj, N) if i /= j

0 if i = j
(6.24)

The goal of MDS is to find a set of vectors Z1, Z2, . . . , Z|K| that incrementally
approximate the distance in the dissimilarity matrix. Specifically, we wish to minimize
the distance between the projected vectors and the original data as

C = min
Z1,Z2,...Z|K|

∑
i<j

(‖Zi − Zj‖ − R(i,j))
2 (6.25)

where C is the cost function to be minimized. We then perform the minimization
using numerical optimization based on the eigenvector decomposition of R [39].
Typically, the first and second vectors, Z1 and Z2, are sufficient to allow visualization
of clustering within the data.

Figure 6.19 shows the evolution of the Internet AS topology over time, as observed
in the UCLA dataset described in Section 6.4.3. It is difficult to discern any consistent
evolution from the raw WSD plots in Figure 6.19a. However, applying the MDS to
reduce the dimensionality from 71 to 2 results in Figure 6.19b, in which each point
represents the projection of a computed WSD for a given topology, that is, the WSD

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 –15 –10

x 10–3

x 10–3
–5 0 50

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01 6

4

2

0

–2

–4

–6

–8

–10

ω
(G

,4
)

Jan 2004

May 2004

Jan 2006

Apr 2008

Jan 2005

λ

(a) (b)

FIGURE 6.19 Structural evolution of the Internet via raw WSD and WSD with MDS applied.
(a) Raw WSDs. (b) WSDs after applying MDS.

www.it-ebooks.info

http://www.it-ebooks.info/

186 WEIGHTED SPECTRAL DISTRIBUTION

computed for a given month’s observations in the UCLA dataset. Note that the axes
are dimensionless, it is not the particular values that are important but the separation
of points computed.

Interestingly, plotting with an arrow joining consecutive points, that is, an arrow
connects the points for datasets 1 and 2, another connects points for datasets 2 and
3, and so on, shows that the evolution of the WSD for the topology appears to be
consistent over time, it represents the “structural walk” of the Internet AS topology
observed by the UCLA data. The lack of clustering of points around a center sug-
gests the structure of the Internet is evolving in some way. This evolution is very
difficult to see by directly comparing the WSD lines but can easily be observed using
this multidimensional scaling technique. This is much more straightforward than the
current alternative approach which would involve using a complex set of topological
measures to distinguish the different graphs [40]. The reason for this actual evolution
is better examined in a different domain; for the interested reader we recommend
reading [41]. Here, the aim is merely to show that MDS used in conjunction with
WSD can be used to track the structural changes in a network.

6.9 CONCLUSIONS

Comparison of graph structures is a frequently encountered problem across many
scientific areas. To perform a meaningful comparison requires the definition of
a cost–function that encodes those features of each graph considered important.
While the spectrum of a graph encodes a graph’s features, the raw spectrum con-
tains too much information to be useful on its own. In this chapter, we have intro-
duced a new metric, the weighted spectral distribution, that improves on the raw
graph spectrum by discounting those eigenvalues believed to be less significant and
noisy, while emphasizing the contribution of those believed to be important and
information-rich.

We then showed the use of this cost–function to optimize the selection of parameter
values for the subject of Internet topology generation. The cost–function defined by
the weighted graph spectrum was shown to lead to parameter choices that are appro-
priate in the context of the particular problem domain: Internet topology generation.
In particular, we showed that the parameter choices so made are close to the default
values and, in for one particular graph-generator (BA), fall within the expected region.
In addition, as the metric is formed through summation, it is possible to go further
and identify the particular eigenvalues that are responsible for significant differences.
Although it is currently difficult to assign specific features to specific eigenvalues,
we hope that this will also become a feature of the weighted spectral distribution in
the future. Finally, we briefly demonstrated a technique for projecting the raw WSD
distributions into a lower dimensional space. This makes comparison of different dis-
tributions straightforward, as shown by the clear evolution of the Internet’s topology
viewed through the UCLA dataset.

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 187

REFERENCES

1. H. Bunke, Graph matching: theoretical foundations, algorithms, and applications, in
Proceedings of the International Conference on Vision Interface, pp. 82–88, May
2000.

2. V. Kann, On the approximability of the maximum common subgraph problem, in Proceed-
ings of 9th Annual Symposium on Theoretical Aspects of Computer Science, pp. 377–388,
1992.

3. A.J. Seary, W.D. Richards, Spectral methods for analyzing and visualizing networks: an in-
troduction, in Dynamic Social Network Modeling and Analysis, National Academic Press,
pp. 209–228, 2003.

4. B. Nadler, S. Lafon, R. Coifman, I. Kevrekidis, Diffusion maps, spectral clustering and
eigenfunctions of fokker-planck operators, in Neural Information Processing Systems
(NIPS), 2005.

5. A. Ng, M. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, in Advances
in Neural Information Processing Systems 14 (T. Dietterich, S. Becker, Z. Ghahramani,
ed.), MIT Press, 2002.

6. A.G. Thomason, Pseudo-random graphs, Random Graphs ’85, North-Holland Mathemat-
ical Study, vol. 144, pp. 307–331, 1987.

7. F.R.K. Chung, R.L. Graham, R.M. Wilson, Quasi-random graphs, Combinatorica, 9(4),
345–362 (1989).

8. F.R.K. Chung, Spectral Graph Theory (CBMS Regional Conference Series in Mathemat-
ics), American Mathematical Society, 1997.

9. X. Wang, D. Loguinov, Wealth-based evolution model for the internet as-level topology,
in Proceedings of IEEE INFOCOM, April 2006.

10. D. Fay, H. Haddadi, A.G. Thomason, A.W. Moore, R. Mortier, A. Jamakovic, S. Uhlig, M.
Rio, Weighted spectral distribution for internet topology analysis: theory and applications,
IEEE/ACM Trans. Netw. (ToN), 18(1), 164–176 (2010).

11. R. Albert, A.-L. Barabasi, Topology of evolving networks: local events and universality,
Phys. Rev. Lett. 85, 2000.

12. H. Haddadi, D. Fay, A. Jamakovic, O. Maennel, A.W. Moore, R. Mortier, M. Rio, S. Uhlig,
Beyond node degree: evaluating AS topology models. Technical Report UCAM-CL-TR-
725, University of Cambridge, Computer Laboratory, July 2008.

13. H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, W. Willinger, Network topol-
ogy generators: degree-based vs. structural, in Proceedings of ACM SIGCOMM 2002,
Pittsburgh, PA, pp. 147–159, 2002.

14. P. Mahadevan, D. Krioukov, M. Fomenkov, X. Dimitropoulos, K.C. Claffy, A. Vahdat,
The Internet AS-level topology: three data sources and one definitive metric, SIGCOMM
Compu. Commun. Rev. 36(1), 17–26 (2006).

15. M.E.J. Newman, Assortative mixing in networks, Phys. Rev. Lett. 89(20), 871–898
(2002).

16. V. Colizza, A. Flammini, M.A. Serrano, A. Vespignani, Detecting rich-club ordering in
complex networks, Nat. Phys. 2(2), 110–115 (2006).

17. S. Zhou, Characterising and modelling the Internet topology, the rich-club phenomenon
and the PFP model, BT Technol. J. 24 (2006).

www.it-ebooks.info

http://www.it-ebooks.info/

188 WEIGHTED SPECTRAL DISTRIBUTION

18. P. Holme, B.J. Kim, C.N. Yoon, S.K. Han, Attack vulnerability of complex networks. Phys.
Rev. E, 65(5), 298–305 (2002).

19. M. Baur, U. Brandes, M. Gaertler, D. Wagner, Drawing the AS graph in 2.5 dimensions,
in Graph Drawing (J. Pach, ed.), Springer, New York, pp. 43–48, 2004.

20. D.R. Wood, An algorithm for finding a maximum clique in a graph, Oper. Res. Lett. 21(7),
211–217 (1997).

21. B.M. Waxman, Routing of multipoint connections, IEEE J. Selected Areas Commun.
(JSAC), 6(9), 1617–1622 (1988).

22. P. Erdös, A. Rényi, On random graphs, in Mathematical Institute Hungarian Academy,
196, London, 1985.

23. A.L. Barabasi, R. Albert, Emergence of scaling in random networks, Science 286(5439),
509–512 (1999).

24. M. Faloutsos, P. Faloutsos, C. Faloutsos, On power–law relationships of the Internet topol-
ogy, in Proceedings of ACM SIGCOMM 1999, 1999.

25. T. Bu, D. Towsley, On distinguishing between Internet power–law topology generators, in
Proceedings of IEEE Infocom 2002, June 2002.

26. J. Winick, S. Jamin, Inet-3.0: internet topology generator, Technical Report CSE-TR-456-
02, University of Michigan Technical Report CSE-TR-456-02, 2002.

27. E.W. Zegura, K.L. Calvert, M.J. Donahoo, A quantitative comparison of graph-
based models for Internet topology, IEEE/ACM Trans. Netw. (TON) 5(6), 770–783
(1997).

28. A. Medina, A. Lakhina, I. Matta, J. Byers, BRITE: an approach to universal topology
generation, in IEEE MASCOTS, Cincinnati, OH, USA, pp. 346–353, August 2001.

29. A. Feldmann, O. Maennel, Z.M. Mao, A. Berger, B. Maggs, Locating Internet routing
instabilities, in Proceedings of ACM SIGCOMM 2004, 2004.

30. Z.M. Mao, J. Rexford, J. Wang, R.H. Katz, Towards an accurate AS-level traceroute tool,
in Proceedings of ACM SIGCOMM 2003, Karlsruhe, Germany, pp. 365–378, 2003.

31. S. Zhou, G.-Q. Zhang, G.-Q. Zhang, Chinese Internet AS-level topology, IET Commun.
1(2), 209–214 (2007).

32. R. Oliveira, B. Zhang, L. Zhang, Observing the evolution of Internet AS topology, in
Proceedings of ACM SIGCOMM 2007, Kyoto, Japan, August 2007.

33. P. Mahadevan, D. Krioukov, K. Fall, A. Vahdat, Systematic topology analysis and gener-
ation using degree correlations, in Proceedings of ACM SIGCOMM 2006, pp. 135–146,
Pisa, Italy, 2006.

34. H. Haddadi, D. Fay, S. Uhlig, A. Moore, R. Mortier, A. Jamakovic, M. Rio, Tuning topol-
ogy generators using spectral distributions, in Lecture Notes in Computer Science, SPEC
International Performance Evaluation Workshop, Springer Darmstadt, Germany, vol. 5119,
2008.

35. A. Banerjee, J. Jost, Spectral plot properties: towards a qualitative classification of net-
works, in European Conference on Complex Systems, October 2007.

36. J.A. Nelder, R. Mead, A simplex method for function minimization, Comput. J. 7, 308–313
(1965).

37. J.E. Dennis, D.J. Woods, Optimization in microcomputers: the Nelder–Meade simplex
algorithm, in New Computing Environments: Microcomputers in Large-Scale Computing
(A. Wouk, ed.), SIAM, pp. 116–122, 1987.

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 189

38. T. Cox, M. Cox, Multidimensional Scaling, Chapman and Hall, 1994.

39. G.A.F. Seber, Multivariate Observations, John Wiley & Sons, 1984.

40. M. Iliofotou, M. Faloutsos, M. Mitzenmacher, Exploiting dynamicity in graph-based traffic
analysis: techniques and applications, in ACM CoNEXT, 2009.

41. H. Haddadi, D. Fay, S. Uhlig, A. Moore, R. Mortier, A. Jamakovic, Mixing biases: structural
changes in the AS topology evolution, in Proceedings of the 2nd Traffic Monitoring and
Analysis (TMA) Workshop, Zurich, Switzerland, April 2010.

www.it-ebooks.info

http://www.it-ebooks.info/

7
THE STRUCTURE OF AN EVOLVING
RANDOM BIPARTITE GRAPH

Reinhard Kutzelnigg

7.1 INTRODUCTION

In the late 1960s of the last century, the theory of random graphs was developed
by Erdös and Rényi [1,2]. Most commonly studied in the literature are the G(n, p)
and the G(n, M) model. The first consists of all simple graphs possessing n vertices,
such that each of the

(
n
2

)
possible edges is chosen independently with probability p.

In contrast, by using the G(n, M) model, a member of the set of all simple graphs
consisting of n nodes and M edges is selected, such that each graph is chosen with the
same probability. Despite this different definition, these models are closely related.
A lot of analysis has been done to address this topic, see, for example, Refs. [1] or
[2] for further information.

In this chapter, we consider generalizations of the G(n, M) model. More pre-
cisely, we admit the occurrence of multiple edges and loops. Furthermore, we define
G(m1, m2, n), a similar model of bipartite random graphs. To be precise, we deal with
graphs possessing two kinds of labeled vertex sets, say V1 and V2, where |V1| = m1
and |V2| = m2 hold. Starting with an empty graph, we consider a growth process. To
insert an edge, we select a node of each type uniformly at random and connect the
obtained vertices. Additionally, the ith inserted edge is labeled by i. We repeat these
steps, until a total of n edges is generated. Note that multiple edges may occur during
this process.

Let us consider the connected components of our bipartite graph. The basic type
of component is a tree, that is, a connected but acyclic graph. Furthermore, an

Statistical and Machine Learning Approaches for Network Analysis, Edited by Matthias Dehmer and
Subhash C. Basak.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

191

www.it-ebooks.info

http://www.it-ebooks.info/

192 THE STRUCTURE OF AN EVOLVING RANDOM BIPARTITE GRAPH

isolated node can be considered to build a tree of minimal size. Thus, initially our
graph contains tree components only. Whenever an edge is inserted, we hence usually
connect two trees to build one new tree of increased size. However, as the components
grow, the probability increases that the two chosen nodes already belong to the same
tree. In the latter situation, a cycle is created and thus a cyclic component evolves.
Furthermore, it might happen after some time, that either two cyclic components are
connected, or that a further cycle in an already cyclic component is created. This is the
first time that a complex component evolves, that is, a component where the number
of edges exceeds the number of vertices. However, as we will see later on, this is quite
unlikely to happen, conditioned on the property that the number of edges does not
exceed a certain limit. A lot of results concerning the structure of these sparse graphs
can be deduced, we present them in the following section.

For nonbipartite graphs, it is well known [3] that there is a high probability that a
single giant component evolves, containing most of the vertices. A similar behavior
is conjectured for the bipartite case too [4]. Unfortunately, the functions involved in
the bipartite case are much more difficult to handle, and no detailed results are known
so far.

The bipartite graphs considered here are closely related to a hash table data structure
called Cuckoo hashing [5]. Thus, most of the results presented here were originally
obtained investigating this algorithm and its variations, see Refs. [6–12]. However,
the structure of these graphs is of interest for itself, see for example, Ref. [4] and Refs.
[3,13] for nonbipartite graphs.

The remainder of this chapter is organized as follows. First, we present our the-
orems covering the component structure. For convenience of the reader, the proofs
of these results are split up into three parts and are presented in different sections.
We begin with a section introducing the tool of generating functions and deduce the
functions that enable us to count the graphs considered here. Further, we proceed
showing how asymptotic expansions can be obtained by using a saddle point method
applied to the previously introduced generating functions. Based on these preparatory
works, we put things together and complete the proofs. Finally, we present empirical
data to both justify and extend our analysis.

7.2 THE STRUCTURE OF A SPARSE BIPARTITE GRAPH

We start defining the parameters of the graphs considered in this section. The basic
case of a bipartite graph is the symmetric one, that is, both sets of vertices have equal
cardinality, say m = m1 = m2. Further, the number of edges is denoted by n. Note
that all results provided here are asymptotic approximations. Thus, we somehow fix
the ratio of n/m and consider what happens as m turns to infinity. Of course, n has
to be an integer number, hence we set it equal to the largest integer that is less than
or equal to our aspired target. For instance, if we want to achieve a “constant” ratio
of 1 − ε, we define n = �(1 − ε)m�.

Furthermore, we are also interested in the asymmetric situation, that is, m1 /= m2.
We may assume without loss of generality, that m1 > m2 holds. In order to obtain

www.it-ebooks.info

http://www.it-ebooks.info/

THE STRUCTURE OF A SPARSE BIPARTITE GRAPH 193

comparable results, we are using the same parameter m as above. Note that a
symmetric graph contains in total 2m nodes, hence we assure that m1 + m2 =
2m is satisfied. This is done by choosing a constant c ∈ (0, 1) and defining
m1 = �m(1 + c)�, respectively m2 = 2m − m1. Thus, we yield m1/m2 = (1 + c)/
(1 − c)

(
1 + O(m−1)

)
and can obtain any desired constant ratio in the limit. Note that

we do not consider further settings, for instance, assuming constant m2 or sublinear
growth of this parameter. This is based on the fact that we see no practical interest
in these settings. Moreover our methods could not be easily applied, because of the
completely different component structure.

Additionally, we provide results concerning nonbipartite graphs. Again, we assume
that the graph contains 2m nodes and n edges, where the latter value is defined as
above. Thus, we can point out similarities and differences.

To simplify the notation, we assign the following numbers to the cases discussed
above:

1. Symmetric bipartite graphs.

2. Asymmetric bipartite graphs, c ∈ (0, 1) holds.

3. Ordinary, nonbipartite graphs.

For each result, the parameters may depend on the considered case. Thus, we use an
index to provide the corresponding number. Furthermore, note that the asymmetry
factor c is defined in the asymmetric bipartite case only, hence it does not influence
cases 1 and 3 and can thus be omitted in these situations. Furthermore, we consider
two different setups:

A. Sparse graph, ε ∈ (0, 1) respectively ε ∈ (1 − √
1 − c2, 1) is fixed and n, m1,

and m2 defined as above.

B. “Critical case,” n equals m.

First, we consider the probability that all components are either trees or unicyclic,
that is, no complex component occurs. Further, we consider the likelihood that a
graph possesses a complex part having even more cycles. For symmetric bipartite and
usual graphs, it is shown that these probabilities tend to zero, under the conditions of
Setup A. However, there is a phase transition if this limit is exceeded, compare with
Setup B. We infer a similar behavior considering the asymmetric case, but the critical
ratio decreases as the asymmetry increases. In particular, the following results hold:

Theorem 7.1 (Setup A; Cases 1, 2, and 3) [7,10] The probability that no complex
component occurs is given by

1 − pi(ε, c)

m
+ O

(
1

m2

)
.

www.it-ebooks.info

http://www.it-ebooks.info/

194 THE STRUCTURE OF AN EVOLVING RANDOM BIPARTITE GRAPH

(Setup A; Cases 1 and 3) [8,11] The probability that the complex part of the graph
contains at most r more edges than nodes is given by

1 − qi(ε, r)

mr+1 + O
(

1

mr+2

)
.

(Setup B; Cases 1 and 3) [3,7] The probability, that no complex component occurs
is given by √

2

3
+ o(1).

We want to emphasize that our approach allows us to compute the given coefficients
(and even more detailed expansions) explicitly. For instance, we get

p1(ε) = (2ε2 − 5ε + 5)(1 − ε)3

12(2 − ε)2ε3 , p3(ε) = (5 − 2ε)(1 − ε)2

48ε3

and,

p2(ε, c) = (1 − ε)3(10 − 2ε3 + 9ε2 − 3c2ε2 + 9εc2 − 15ε + 2c4 − 10c2)

12(2ε − ε2 − c2)3(c2 − 1)
.

Note that these results provide practical suitable estimates for sufficiently large m, see
Section 7.6 for empirical data. Further, we may compare the individual coefficients.
Thus, we yield p1(ε) ≤ p3(ε) and p1(ε) ≤ p2(ε, c) if ε and c satisfy the required
properties. We conclude that symmetric bipartite graphs are less likely to contain
complex components under the considered properties.

Several related results are given in the literature. For example, Lemma 2.1 of Ref.
[14] treats Case 1 under Setup A, but it does not provide an asymptotic approxima-
tion. The nonbipartite case is considered in Ref. [3]. We proceed considering tree
components:

Theorem 7.2 (Setup A; Cases 1 and 3) [7] The number of tree components T (k, ε)
with k vertices satisfies a central limit theorem of the form

T (k, ε) − μ(k, ε) m√
σ2(k, ε) m

→ N(0, 1),

where N(0, 1) is a normal random variable,

μ(k, ε) = 2
kk−2(1 − ε)k−1ek(ε−1)

k!

and

σ2(k, ε) = μ(k, ε) − 2e2k(ε−1)k2k−4(1 − ε)2k−3(k2ε2 + k2ε − 4kε + 2)

(k!)2 .

www.it-ebooks.info

http://www.it-ebooks.info/

THE STRUCTURE OF A SPARSE BIPARTITE GRAPH 195

Further, mean and variance are asymptotically given by E T (k, ε) = μ(k, ε) m +
O(1) and Var T (k, ε) = σ2(k, ε) m + O(1) as m tends to infinity, respectively.
(Setup A; Case 2) [10] Let (x0, y0) be defined by

x0 = 1 − ε

1 − c
exp

(
−1 − ε

1 + c

)
and y0 = 1 − ε

1 + c
exp

(
−1 − ε

1 − c

)
.

Then, the number of tree components with k vertices possesses asymptotically the
mean

m
(1 − c2)

1 − ε

k∑
l=0

lk−l−1(k − l)l−1 xl
0y

k−l
0

l!(k − l)!
+ O(1).

Moreover, a similar formula for the variance can be found, see Ref. [10].

It is surprising that we obtain exactly the same result, both in Case 1 as well
as in Case 3. However, asymmetric bipartite graphs behave differently. Note that
the number of isolated vertices (i.e., trees of size one) increases, as the asymmetry
increases. As a further consequence, we obtain a decreased number of trees of size
two, but this trend is not unique. For instance, the number of trees possessing five
nodes increases with rising asymmetry. Finally, we present two theorems concerning
cycles and cyclic components.

Theorem 7.3 (Setup A; Cases 1, 2, and 3) [7,10] The number of cyclic compo-
nents with cycle length 2k (respectively k in Case 3) has in limit a Poisson distribu-
tion Po(λi(k, ε, c)). Further, the number of cycles has in limit a Poisson distribution
Po(λ̃i(ε, c)), too. All parameters are given in Table 7.1.

TABLE 7.1 Parameters of Theorems 7.3 and 7.4

Case 1 Case 2 Case 3
(Symmetric Bipartite) (Asymmetric Bipartite) (Nonbipartite)

λi(k, ε, c) 1
2k

(1 − ε)2k 1
2k

(
(1−ε)2

1−c2

)2k
1
2k

(1 − ε)k

λ̃i(ε, c) − 1
2 log

(
1 − (1 − ε)2

) − 1
2 log

(
1 − (1−ε)2

1−c2

)
− 1

2 log ε

φi(s)
√

1−(1−ε)2

1−e2is(1−ε)2

√
1− (1−ε)2

1−c2

1−e2is (1−ε)2

1−c2

√
ε

1−eis(1−ε)

limm→∞ EV (ε, c) (1−ε)2

1−(1−ε)2
(1−ε)2

2ε−ε2−c2
1−ε

2ε

limm→∞ Var V (ε, c) 2(1−ε)2

(1−(1−ε)2)2
2(1−ε)2(1−c2)

(2ε−ε2−c2)2
(1−ε)
2ε2

limm→∞ EU(ε, c) (1−ε)2

ε(1−(1−ε)2)
(1−ε)2(2−ε−c2)

(2ε−ε2−c2)2
(1−ε)
2ε2

limm→∞ Var U(ε, c) (1−ε)2(ε2−3ε+4)

ε2(1−(1−ε)2)2 see Ref. [10] (1−ε)(2−ε)
2ε4

www.it-ebooks.info

http://www.it-ebooks.info/

196 THE STRUCTURE OF AN EVOLVING RANDOM BIPARTITE GRAPH

Note that these parameters are somehow related, that is,

λ̃i(ε, c) =
∑
k≥1

λi(k, ε, c)

holds.

Theorem 7.4 (Setup A; Cases 1, 2, and 3) [7,10] The number of vertices contained
in cycles V (ε, c) has a limiting distribution with characteristic function φi(s), as given
in Table 7.1. Further, denote the number of vertices contained in unicyclic components
by U(ε, c). Then, mean and variance of U(ε, c) have in limit the values provided in
Table 7.1.

We notice that asymmetry leads to an increased number of cycles and nodes in
cyclic components. Furthermore, both parameters increase if we consider an ordinary
graph instead of the symmetric bipartite version.

To prove the results claimed above, we first introduce notations and techniques
that are required to deduce the results. This is done in the following sections. The
formal proofs are finally given in Section 7.5. However, for the sake of shortness,
we consider the symmetric bipartite version only. Note that the further results can be
deduced in a similar way, but are either much easier to prove (ordinary graphs) or else
very long without providing any further insights. Details omitted here can be found
in Refs. [7,10–12].

7.3 ENUMERATING BIPARTITE GRAPHS

In this section, we review the generating functions that enable us to count the number
of graphs of certain type respectively to calculate asymptotic approximations of these
numbers. Note that similar results for nonbipartite graphs are well known, see, for
example, Refs. [3,13]. In contrast, only few results concerning bipartite graphs can be
found in the literature. However, trees and unicyclic components have been studied
recently, see also Ref. [15].

Let F denote a family of bipartite graphs. Then, the corresponding trivariate gen-
erating function is the formal power series

F (x, y, v) =
∑
G∈F

xm1(G)

m1(G)!

ym2(G)

m2(G)!

vn(G)

n(G)!
,

where m1(G) and m2(G) denote the number of nodes of first and second kind and n(G)
denotes the number of edges of G.

Further, we make use of the notation [xm]A(x) to extract the mth coefficient of a
power series A(x), that means

[xm]A(x) = [xm]
∑
k≥0

akx
k = ak.

www.it-ebooks.info

http://www.it-ebooks.info/

ENUMERATING BIPARTITE GRAPHS 197

We start counting all bipartite graphs without restrictions to the type of their compo-
nents. Let Gm1,m2,n denote the set of all vertex and edge-labeled bipartite multigraphs
(V1, V2, E) with |V1| = m1, |V2| = m2, and |E| = n. By definition, it is clear that the
number of all graphs of the family Gm1,m2,n equals

#Gm1,m2,n = mn
1mn

2 . (7.1)

Next, let G◦
m1,m2,n

denote those graphs in Gm1,m2,n without complex components,
that is, all components are either trees or unicyclic. Further,

g◦(x, y, v) =
∑

m1,m2,n

#G◦
m1,m2,n

xm1

m1!

ym2

m2!

vn

n!

denotes the corresponding generating function. Our next goal is to describe this gen-
erating function. For this purpose, we will first consider bipartite trees.

We call a tree bipartite if the vertices are partitioned into two classes V1 (“black”
vertices) and V2 (“white” vertices) such that no vertex has a neighbor of the same class.
They are called labeled if the vertices of type 1, that is vertices in V1, are labeled by
1, 2, . . . , |V1| and the vertices of type 2 are labeled independently by 1, 2, . . . , |V2|.

Let t1(x, y, v) and t2(x, y, v) denote the generating function of rooted bipartite trees,
where the root is contained in V1 and V2. Furthermore, we denote the generating
function of unrooted bipartite trees by t̃(x, y, v). However, it is usually simpler to
consider bivariate generating functions that do not take the edges into account. Since
a tree possesses exactly one more node than edges, the bivariate generating function
t1(x, y) corresponding to t1(x, y, v) satisfies

t1(x, y) = 1

v
t(xv, yv).

We thus slightly abuse notation by donating bivariate and trivariate generating func-
tions by the same letter, however, the correct interpretation should be obvious from
the context.

Lemma 7.1 [7,15] The generating functions t1(x, y), t2(x, y), and t̃(x, y) are given
by

t1(x, y) = xet2(x,y), t2(x, y) = yet1(x,y) (7.2)

and by

t̃(x, y) = t1(x, y) + t2(x, y) − t1(x, y)t2(x, y). (7.3)

Proof: The functional equations (Eq. 7.2) are obvious by their recursive description.
To prove Equation 7.3, consider a rooted tree, possessing a black root labeled by 1,
as an unrooted tree. Next, examine an unordered pair (t1, t2) of rooted bipartite trees
of different kind, and join the roots by an edge. If the black vertex labeled by 1 is
contained in t1, consider the root of t2 as new root, and we obtain a tree possessing

www.it-ebooks.info

http://www.it-ebooks.info/

198 THE STRUCTURE OF AN EVOLVING RANDOM BIPARTITE GRAPH

a white root and at least one black vertex. Otherwise, consider the root of t1 as new
root, and we obtain a tree with a black vertex not labeled by 1. �

Note that t1(x, y) = t2(y, x) holds and that t1(x, x) equals the usual tree function
t(x) = ∑

n≥1 nn−1xn/n! that is given by t(x) = xet(x), see Ref. [16]. Thus, t1(x, y)
and t2(x, y) are surely analytic functions for |x| < e−1 and |y| < e−1. This is due to
the fact that the radius of convergence of t(x) equals 1/e.

With the help of these functions, we can describe the generating function
g◦(x, y, v).

Lemma 7.2 [7] The generating function g◦(x, y, v) is given by

g◦(x, y, v) = e
1
v
t̃(xv,yv)

√
1 − t1(xv, yv)t2(xv, yv)

.

Proof: We have to count graphs where each component is either an unrooted tree
(that is counted by t̃(x, y)) or a graph with exactly one cycle.

Of course, a cycle has to have an even number of vertices (say 2k), where k vertices
are black and the other k vertices are white. A cyclic vertex of black color can be
considered as the root of a rooted tree of type 1 and similarly, a white cyclic vertex
can be considered as the root of a rooted tree of type 2. Note that we have to divide
the product of the generating functions t1(x, y)kt2(x, y)k by 2k to account for cyclic
order and change of orientation. Hence, the corresponding generating functions of an
unicyclic graph with 2k cyclic points is given by

1

2k
t1(x, y)kt2(x, y)k.

Consequently, the generating function of a connected graph with exactly one cycle is
given by

c(x, y) =
∑
k≥1

1

2k
t1(x, y)kt2(x, y)k = 1

2
log

1

1 − t1(x, y)t2(x, y)
.

Since a cyclic component of size m1 + m2 has exactly the same number of edges as
nodes, and since there are (m1 + m2)! possible labels, the corresponding generating
function that takes the number of edges into account in given by c(xv, yv).

Similarly, a tree of size m1 + m2 has exactly n = m1 + m2 − 1 edges. Conse-
quently the generating function t̃(xv, yv)/v corresponds to a bipartite unrooted tree.

Finally the generating function g◦(x, y, v) is given by

g◦(x, y, v) = e
1
v
t̃(xv,yv)+c(xv,yv) = e

1
v
t̃(xv,yv)

√
1 − t1(xv, yv)t2(xv, yv)

,

which completes the proof of the lemma. �

www.it-ebooks.info

http://www.it-ebooks.info/

ENUMERATING BIPARTITE GRAPHS 199

Note that each of these graphs contains exactly m1 + m2 − n trees, thus we yield
the bivariate version

g◦(x, y) = n!
t̃(x, y)m1+m2−n

(m1 + m2 − n)!

1√
1 − t1(x, y)t2(x, y)

. (7.4)

To study more general graphs, it is convenient to consider families of graphs ac-
cording to the excess of edges over vertices in connected components. For instance,
trees and unicyclic components have excess −1 and 0. Further, a component is com-
plex, if it has positive excess. We proceed as in Ref. [3], but we have to adopt the
calculation to the present situation. Thereby, we make use of the following shortened
notation:

Definition 7.1 Let ϑx denote the differential operator x ∂
∂x

, that corresponds to
marking a vertex of first kind. Similarly, we define the operators ϑy and ϑv for marking
a node of second kind resp. an edge.

Hence, we yield

Lemma 7.3 [11] Let Er(x, y) denote the generating function of bipartite graphs
consisting of complex components only and having exactly r more edges than vertices.
These functions satisfy the partial differential recurrence(

r + (1 − t2)ϑx + (1 − t1)ϑy

)
Er = e−Cϑxϑye

CEr−1.

Moreover, E0 = 1 holds, since only the empty graph is complex and has excess 0.

Note that a complex graph possessing excess 1 must consist of a single bicyclic
component, thus E0 provides the corresponding generating function. We do not pro-
vide a proof of this lemma here, since it is rather technical, see Ref. [11] for details.

Solving the recursion of Lemma 7.3 in general seems to be out of reach, but using
a computer algebra system, it is quite easy to get some results. In particular, the
solutions exhibit a certain pattern, hence it is possible to write down an ansatz and
compute the coefficients. Thus, we get for instance

E1 = t1t2(4 + 3t2 + 3t1 + 6t1t2 + 2t1t
2
2 + 2t2

1 t2)

24(1 − t1t2)3 ,

and

E2 = t1t2

1152(1 − t1t2)6

(
720t2

1 t2 + 24t2
1 + 652t3

1 t2
2 + 72t4

1 t3
2 + 156t4

1 t2
2 + 156t4

2 t2
1

+ 48 + 24t2
2 + 201t3

1 t2 + 4t5
2 t3

1 + 688t1t2 + 4t5
1 t3

2 + 201t1t
3
2 + 8t4

1 t4
2

+ 348t3
1 t3

2 + 72t4
2 t3

1 + 652t2
1 t3

2 + 1218t2
1 t2

2 + 720t1t
2
2 + 96t2 + 96t1

)
.

www.it-ebooks.info

http://www.it-ebooks.info/

200 THE STRUCTURE OF AN EVOLVING RANDOM BIPARTITE GRAPH

7.4 ASYMPTOTIC EXPANSION VIA THE SADDLE POINT METHOD

This section provides the tool that is used to infer asymptotic expansions. The result
can be obtained by using a double saddle point approach, see, for example, Refs.
[7,16–19] for details concerning this method. Note that further coefficients of the
asymptotic expansions can be calculated in the same way, but the expressions are so
complicated that it does not make sense to provide them outside a computer algebra
system. A maple worksheet is available on request from the author.

Lemma 7.4 [7] Let f (x, y) and g(x, y) be analytic functions locally around
(x, y) = (0, 0) such that all coefficients [xm1ym2]f (x, y) and [xm1ym2]g(x, y) are non-
negative and that there exists M such that all indices (m1, m2) with m1, m2 ≥ M can
be represented as a finite linear combination of the set {(m1, m2)|[xm1ym2]f (x, y) >

0} with positive integers as coefficients.
Let R1 and R2 be compact intervals of the positive real line such that R = R1 × R2

is contained in the regions of convergence of f (x, y) and g(x, y). Furthermore set

S =
{(

x

f (x, y)

∂

∂x
f (x, y),

y

f (x, y)

∂

∂y
f (x, y)

)
: (x, y) ∈ R

}
.

Then, we have

[xm1ym2]g(x, y)f (x, y)k = g(x0, y0)f (x0, y0)k

2πx
m1
0 y

m2
0 k

√
	

(
1 + H

24	3

1

k
+ O

(
1

k2

))
,

uniformly for (m1/k, m2/k) ∈ S, where x0 and y0 are uniquely determined by

m1

k
= x0

f (x0, y0)

[
∂

∂x
f (x, y)

]
(x0,y0)

,
m2

k
= y0

f (x0, y0)

[
∂

∂y
f (x, y)

]
(x0,y0)

and the constants 	 and H are given in the following way:
Let κij and κij be the cummulants

κij =
[

∂i

∂ui

∂j

∂vj
log f (x0e

u, y0e
v)

]
(0,0)

,

κij =
[

∂i

∂ui

∂j

∂vj
log g(x0e

u, y0e
v)

]
(0,0)

.

Then, 	 = κ20κ02 − κ2
11 holds and H is given by

H = α + β + β̂ + γκ10 + γ̂κ01 + δκ10κ01 + ηκ2
10 + η̂κ2

01 + 4ηκ20 + 4η̂κ02 + 4δκ11,

www.it-ebooks.info

http://www.it-ebooks.info/

ASYMPTOTIC EXPANSION VIA THE SADDLE POINT METHOD 201

where

α = 54κ21κ11κ12κ20κ02 + 6κ22κ20κ02κ
2
11 − 12κ22κ

4
11 + 4κ03κ

3
11κ30

+ 36κ21κ
3
11κ12 + 6κ22κ

2
20κ

2
02 + 6κ03κ11κ30κ20κ02,

β = −5κ3
02κ

2
30 + 30κ2

02κ30κ11κ21 − 24κ02κ30κ12κ
2
11 − 6κ2

02κ30κ12κ20

− 12κ11κ
2
02κ31κ20 − 36κ02κ

2
21κ

2
11 − 9κ2

02κ
2
21κ20 + 3κ3

02κ40κ20

− 3κ2
02κ40κ

2
11 + 12κ3

11κ02κ31,

γ = 12	
(
κ2

02κ30 − κ11κ20κ03 − 3κ21κ11κ02 + κ12κ
2
11 + κ12(κ02κ20 + κ2

11)
)

,

δ = 24	(κ11κ20κ02 − κ3
11),

η = 12	(κ02κ
2
11 − κ2

02κ20),

and ˆ indicates to replace all functions of type κij by κji.

Proof: In our proof, we will use the formula

∫ ∞

−∞
e−z2/2zk dz =

{
1 · 3 · 5 . . . (k − 1)

√
2π if k is even,

0 if k is odd.
(7.5)

The technical conditions on the coefficients of f (x, y) ensure that the function
f (x0e

is, y0e
it), if (s, t) ∈ [−π/2, π/2]2 holds, has its maximal modulus for s = t = 0.

Furthermore, it can be seen that the saddle point (x0, y0) is unique, because the
cummulants of second order are strictly positive (compare with Ref. 19).

We start by applying Cauchy’s formula and substitute x = x0e
is and y = y0e

it :

[xm1ym2]g(x, y)f (x, y)k = − 1

4π2

∫
|x|=x0

∫
|y|=y0

g(x, y)f (x, y)k

xm1+1ym2+1 dy dx

= 1

4π2x
m1
0 y

m2
0

∫ π

−π

∫ π

−π

g
(
x0e

is, y0e
it
)
f

(
x0e

is, y0e
it
)k

e−m1is−m2it dt ds.

The contribution of the integral taken over the range I = (
[−π, π] × [−π, π]

)\(
[−α, α] × [−α, α]

)
is very small compared to the remaining integral, where

α = k−1/2+ξ and ξ denotes a real number satisfying 0 < ξ < 1/6. This can be seen
as follows: by continuity we surely have |f (

x0e
is, y0e

it
) | ≤ f (x0, y0) − δ if |s| ≥ η

or |t| ≥ η, where δ > 0 and η > 0 are chosen appropriately. Furthermore, for |s| < η

and |t| < η we can use a local expansion of the form

e
k log f

(
x0e

is,y0e
it
)
−m1is−m2it = f (x0, y0)k e

− k
2

(
κ20s

2+2κ11st+κ02t
2
)
+O

(
k
− 1

2 +3ξ
)

www.it-ebooks.info

http://www.it-ebooks.info/

202 THE STRUCTURE OF AN EVOLVING RANDOM BIPARTITE GRAPH

to deduce that (for some c > 0)∣∣∣∣
∫∫

I

g
(
x0e

is, y0e
it
)
f

(
x0e

is, y0e
it
)k

e−m1is−m2it dt ds

∣∣∣∣
≤ 4π2g(x0, y0)f (x0, y0)ke−ck2ξ

.

Hence, this part of the integral is negligible (as proposed).
Next, we substitute u = √

ks and v = √
kt and calculate Taylor expansions of the

functions log f and log g. More precisely, we obtain the expansions

k log f
(
x0e

i u√
k , y0e

i v√
k

)
− m1i

u√
k

− m2i
v√
k

= k log f (x0, y0)

− 1

2

(
κ20u

2 + 2κ11uv + κ02v
2
)

− i

6
√

k

(
κ30u

3 + 3κ21u
2v + 3κ12uv2 + κ03v

3
)

+ 1

24k

(
κ40u

4 + 4κ31u
3v + 6κ22u

2v2 + 4κ13uv3 + κ04v
4
)

+ O
(
kα5

)
,

and

log g
(
x0e

i u√
k , y0e

i v√
k
)

= log g(x0, y0) + i√
k

(κ10u + κ01v) − 1

2k

(
κ20u

2 + 2κ11uv + κ02v
2
)

+ O
(
α3

)
in the neighborhood of (x0, y0). The linear terms vanish due to the choice of the saddle
point. By using further expansions in k, we can rewrite the remaining integral in the
following way:

1

4π2x
m1
0 y

m2
0

∫ α

−α

∫ α

−α

g
(
x0e

is, y0e
it
)
e
k log f

(
x0e

is,y0e
it
)
−m1is−m2itdt ds

= g(x0, y0)f (x0, y0)k

4kπ2x
m1
0 y

m2
0

∫ α
√

k

−α
√

k

∫ α
√

k

−α
√

k

e
− 1

2

(
κ20u

2+2κ11uv+κ02v
2
)

×
(

1 − i

6
√

k

(
κ30u

3 + 3κ21u
2v + 3κ12uv2 + κ03v

3
)

+ i√
k

(κ10u + κ01v) − 1

72k

(
κ30u

3 + 3κ21u
2v + 3κ12uv2 + κ03v

3
)2

+ 1

24k

(
κ40u

4 + 4κ31u
3v + 6κ22u

2v2 + 4κ13uv3 + κ04v
4
)

+ 1

6k

(
κ30u

3 + 3κ21u
2v + 3κ12uv2 + κ03v

3
)

(κ10u + κ01v)

− 1

2k
(κ10u + κ01v)2 − 1

2k

(
κ20u

2 + 2κ11uv + κ02v
2
)

+ O
(
α9k3

))
dv du.

(7.6)

www.it-ebooks.info

http://www.it-ebooks.info/

PROOFS OF THE MAIN THEOREMS 203

Without loss of generality, we can assume that κ20 ≥ κ02. We substitute u =√
κ02/	 a and v = −κ11/

√
κ02	 a + b/

√
κ02, where 	 = κ20κ02 − κ2

11. Hence,

∫ α
√

k

−α
√

k

∫ α
√

k

−α
√

k

e
− 1

2

(
κ20u

2+2κ11uv+κ02v
2
)

dv du = 1√
	

∫ μ

−μ

∫ ν(a)

−ν(a)
e− a2+b2

2 db da,

where μ = α
√

k	/κ02 and ν(a) = α
√

kκ02 + aκ11/
√

	. Note that for all a satisfy-
ing −μ ≤ a ≤ μ, the inequality ν(a) ≥ νmin = α

√
k(

√
κ02 − κ11/

√
κ02) is valid. Fur-

thermore the relation κ20 ≥ κ02 implies that
√

κ02 − κ11/
√

κ02 > 0. Consequently,
we get (for some constant 0 < c < 1

2)

∫ ∞

ν(a)
e− b2

2 bl db ≤
∫ ∞

νmin

e− b2
2 bl db = O

(
e−ck2ξ

)
. (7.7)

The last part of Equation 7.6 can be estimated by

∣∣∣∣
∫ α

√
k

−α
√

k

∫ α
√

k

−α
√

k

e
− 1

2

(
κ20u

2+2κ11uv−κ02v
2
)
O

(
k3α9

)
dv du

∣∣∣∣
≤ O (

k3α9
)

√
	

∫ μ

−μ

∫ ν(a)

−ν(a)
e− a2+b2

2 db da ≤ O
(
k3α9

) ∫ ∞

−∞

∫ ∞

−∞
e− a2+b2

2 db da

= O
(
k− 3

2 +9ξ
)

.

Finally, we introduce the notation

I(p, q) =
∫ μ

−μ

∫ ν(a)

−ν(a)
e− a2+b2

2 apbq db da

=
∫ ∞

−∞

∫ ∞

−∞
e− a2+b2

2 apbq db da + O
(
e−ck2ξ

)
(7.8)

Obviously, I(p, q) = 0 if either p or q is odd. Hence, the main term of the integral
in Equation 7.6 can be rewritten using the functions I(p, q). It remains to complete
these integrals I(p, q) to the range R2 (see Eq. 7.8) and to calculate them according
to Equation 7.5. �

7.5 PROOFS OF THE MAIN THEOREMS

We provide proofs for the symmetric bipartite case only. Note that the two other cases
can be treated in a similar manner. However, nonbipartite graphs are much simpler
to handle, because the calculations involve univariate instead of bivariate generating
functions. On the other hand, the asymmetric bipartite case can be treated similar to
the symmetric one, however, the calculations are even more technical due to the lack
of symmetry and thus omitted.

www.it-ebooks.info

http://www.it-ebooks.info/

204 THE STRUCTURE OF AN EVOLVING RANDOM BIPARTITE GRAPH

Proof (of Theorem 7.1): We start considering the probability that no complex com-
ponent occurs during the noncritical phase. The generating function of all such graphs
is given by Equation 7.4. What is left, is to extract the coefficient of xmym and
to divide this result by Equation 7.1, the corresponding total number of graphs.
Recall that ε > 0 is fixed. We proceed considering the sequence of integer pairs
(m, n) = (m, �(1 − ε)m�). For technical reasons, we also define the ratio

ε′ = ε′
m = m − n

m
= 1 − �(1 − ε)m�

m
= ε + O

(
m−1

)
which is always very close to ε. Thus, we may apply Lemma 7.4. It turns out that the
saddle point is given by

x0 = y0 = n

m
e− n

m = (1 − ε′)eε′−1 <
1

e
.

Combining the result with Stirling’s formula, we thus obtain

#G◦
m,m,n = m2n

(
1 − 1

m

(2ε′2 − 5ε′ + 5)(1 − ε′)3

12(2 − ε′)2ε′3 + O
(

1

m2

))

Finally, we can safely replace ε′ by ε = ε′ + O(m−1) without changing the expansion.
All changes go into the error term O(m−2).

Note that the critical case, that is Setup B, is somehow different. Lemma 7.4 can not
be directly applied, because the saddle point would coincide with the singularity of
the denominator. Thus, additional calculations and a different saddle point approach
are required, see Ref. [7] for details.

Finally, we consider the probability that the complex part of a symmetric bipartite
graph contains at most r more edges than nodes. To calculate an asymptotic expansion
for a certain r, we thus proceed counting all graphs possessing excess exactly equal
to s for all s less or equal than r. Such a graph contains 2m − n + s unrooted tree
components, and a possibly empty set of unicyclic components:

#Gs
m,m,n = (m!)2n![xmym]

t̃(x, y)2m−n+s

(2m + n − s)!
ec(x,y)Es(x, y).

An asymptotic expansion can again be derived by applying Lemma 7.4. In particular,
we infer the same saddle point (x0, y0) as above. Finally, the probability that the
excess equals at most r, is given by

r∑
s=0

#Gs
m,m,n

#Gm,m,n

.

We performed these calculations for r ≤ 2 using Maple and obtained in particular

qi(ε, 1) = (ε − 1)4(4ε6 − 52ε5 + 305ε4 − 868ε3 + 1358ε2 − 1120ε + 385)

288(−2 + ε)4ε6 .

www.it-ebooks.info

http://www.it-ebooks.info/

PROOFS OF THE MAIN THEOREMS 205

Furthermore, a general proof of this property without the explicit calculation of an
asymptotic approximation is based on the results of Ref. [8], together with the obser-
vations of Ref. [11]. �

Our further results concern the component structure of the graph. The proofs
are again based on a generating function approach using Equation 7.4. Further, we
introduce an additional variable to “mark” the parameter of interest, see for instance
Refs. [16,20–22] for further details of this method.

Again, recall that we fix ε > 0 and suppose that n = �(1 − ε)m�. We also note that
it is sufficient to consider graphs of G◦

m,m,n, the set of bipartite graphs without complex
components, since all results for G◦

m,m,n hold for unrestricted random bipartite graphs
too. This can be easily seen in the following way. Consider a random variable ξ defined
on the set Gm,m,n (with n = �(1 − ε)m� and ε > 0) and ξ′ its restriction to G◦

m,m,n.
Then the corresponding distribution functions by Fξ and Fξ′ satisfy the relation

|Fξ − Fξ′ | ≤ P(Gm,m,n \ G◦
m,m,n) = O(1/m).

We proceed considering the cyclic components, since they are easier to handle.

Proof (of Theorem 7.3): In particular, we prove the following facts: The moment
generating function of the number of cycles Cn,m and the number of cycles of length
2k Cn,m,k in a graph of G◦

m,m,n (with n = �(1 − ε)m� and ε > 0) is given by

E es Cn,m = exp

(
log

(
1 − (1 − ε)2

)
2

(
1 − es

))(
1 + O

(
1

m

))
,

and

E es Cn,m,k = exp

(
− (1 − ε)2k

2k

(
1 − es

))(
1 + O

(
1

m

))
,

respectively, where s is any fixed real number. Since the moment-generating function
of a Poisson distribution Po(λ) is given by eλ(es−1) we immediately deduce Theo-
rem 7.3, once these formulas are proven.

We start with the calculation of the total number of cycles. For this purpose, we
introduce a new variable w that marks each cyclic component, that is, the exponent
of w counts the number of cycles. Equation 7.4 generalizes to

g◦
c(x, y, v, w) = exp

(
1

v
t̃(xv, yv) + w

2
log

1

1 − t1(x, y)t2(x, y)

)

=
exp

(
1
v
t̃(xv, yv)

)
(1 − t1(xv, yv)t2(xv, yv))w/2 .

www.it-ebooks.info

http://www.it-ebooks.info/

206 THE STRUCTURE OF AN EVOLVING RANDOM BIPARTITE GRAPH

Of course, we have g◦
c(x, y, v, 1) = g◦(x, y, v). Hence, the moment-generating func-

tion is given by

E es Cn,m = [xmymvn] g◦(x, y, v, es)

[xmymvn] g◦(x, y, v, 1)
.

Again, the number of tree components equals 2m − n, thus the generating function
simplifies to

[
xmymvn

(m!)2n!

]
g◦

c(x, y, v, es) = n!(m!)2

(2m − n)!
[xmym]

t̃(x, y)2m−n

(1 − t1(x, y)t2(x, y))e
s/2 .

We continue using Cauchy’s formula and the double saddle point method described
in Lemma 7.4. Note that we can use the same saddle point x0 = y0 = (1 − ε′)eε′−1.
The calculation is even easier because it is sufficient to calculate the leading term.

We make use of the inequality

∣∣(1 − t1(x, y)t2(x, y))−es/2
∣∣ ≤ (1 − t1(x0, y0)t2(x0, y0))−es/2,

that is satisfied on the lines |x| = x0, |y| = y0 of integration. Furthermore, since
es = O(1), we obtain a corresponding result:

[xmym]
t̃(x, y)2m−n

(1 − t1(x, y)t2(x, y))e
s/2

∼ 1

2π(x0y0)mk
√

	

t̃(x0, y0)2m−n

(1 − t1(x0, y0)t2(x0, y0))e
s/2 .

Thus, we obtain the moment-generating function

E es Cn,m =
√

1 − t1(x0, y0)t2(x0, y0)

(1 − t1(x0, y0)t2(x0, y0))e
s/2

(
1 + O

(
1

m

))

=
(

1 − (1 − ε)2
)(1−es)/2

(
1 + O

(
1

m

))
,

which completes the proof of the first part.
The proof of the second part is very similar, we just replace g◦

c by the generating
function

g◦
k(x, y, v, w) =

exp
(

1
v
t̃(xv, yv) + (w − 1) 1

2k
t1(xv, yv)kt2(xv, yv)k

)
√

1 − t1(xv, yv)t2(xv, yv)
.

www.it-ebooks.info

http://www.it-ebooks.info/

PROOFS OF THE MAIN THEOREMS 207

Hereby, w is used to mark cycles of length 2k. Recall that the generating function
of a component containing a cycle of length 2k is given by 1

2k
t1(x, y)kt2(x, y)k. We

proceed as usual and yield

[
xmymvn

(m!)2n!

]
g◦

k(x, y, v, es)

= n!(m!)2

(2m − n)!
[xmym]

exp
(

(es − 1) 1
2k

t1(x, y)kt2(x, y)k
)

√
1 − t1(x, y)t2(x, y)

t̃(x, y)2m−n.

Finally, the moment-generating function of Cn,m,k equals

E es Cn,m,k = [xmymvn]g◦
k(x, y, v, es)

[xmymvn]g◦
k(x, y, v, 1)

= exp
(

(es − 1)
1

2k
t1(x0, y0)kt2(x0, y0)k

) (
1 + O

(
1

m

))

= exp

(
− (1 − ε)2k

2k

(
1 − es

))(
1 + O

(
1

m

))
,

which completes the proof. �

Next, we consider the number of vertices contained in cyclic components.

Proof (of Theorem 7.4): For the first part of the proof, we have to count the number
of vertices Vn,m contained in cycles. We make use of the generating function

g◦
c(x, y, v, w) =

exp
(

1
v
t̃(xv, yv)

)
√

1 − w2t1(xv, yv)t2(xv, yv)
,

where the exponent of w counts the number of cyclic points. Hence by again using
the double saddle point methods, we get the claimed characteristic function, see Ref.
[7] for details.

If we count the number of all vertices contained in cyclic components, the gener-
ating function modifies to

g◦
v(x, y, v, w) =

exp
(

1
v
t̃(xv, yv)

)
√

1 − t1(xvw, yvw)t2(xvw, yvw)
.

Here, we took care of all vertices of trees that are attached to cycles. It is straightfor-
ward to calculate asymptotic mean and variance. �

www.it-ebooks.info

http://www.it-ebooks.info/

208 THE STRUCTURE OF AN EVOLVING RANDOM BIPARTITE GRAPH

Finally, we consider tree components.

Proof (of Theorem 7.2): The proof of this theorem is more complicated, since we
also normalize depending on m. As in the formulation of Section 7.2, we use the
following notation:

μ = 2
kk−2(1 − ε)k−1ek(ε−1)

k!
,

and

σ2 = μ − 2e2k(ε−1)k2k−4(1 − ε)2k−3(k2ε2 + k2ε − 4kε + 2)

(k!)2

where k ≥ 1 is integer and 0 < ε < 1 holds.
First, we show that mean value and variance of the number of tree components

Tm,n,k with k vertices of a randomly chosen graph of G◦
m,m,n (with n = �(1 − ε)m�

and ε > 0) are given by

E Tmn,k = mμ + O (1) (7.9)

and by

Var Tmn,k = mσ2 + O (1) .

In what follows, we make use of the generating function of a bipartite tree components
with 2k vertices. Because of Lemma 7.1, it is straightforward to calculate the number
of unrooted trees possessing m1 and m2 nodes of each kind. Thus, it is easy to see
that the generating function we are looking for is given by

t̃k(x, y) =
∑

m1+m2=k

m
m2−1
1 m

m1−1
2

xm1

m1!

ym2

m2!
.

We introduce the variable w to mark trees which are of size k and obtain the following
generating function

g◦
k,t(x, y, v, w) =

exp
(

1
v
t̃(xv, yv) + (w − 1) 1

v
t̃k(xv, yv)

)
√

1 − t1(xv, yv)t2(xv, yv)
.

The lth factorial moment is then given by

E Tmn,k(Tmn,k − 1) · · · (Tmn,k − l + 1) =
[xmymvn]

[
∂l

∂wl g
◦
t (x, y, v, w)

]
w=1

[xmymvn]g◦
t (x, y, v, 1)

.

www.it-ebooks.info

http://www.it-ebooks.info/

EMPIRICAL DATA 209

The numerator of this expression simplifies to

[xmymvn]

[
∂l

∂wl
g◦

t (x, y, v, w)

]
w=1

= [xmym]

[
∂l

∂wl

(
t̃(x, y) + (w − 1)t̃k(x, y)

)2m−n

(2m − n)!
√

1 − t1(x, y)t2(x, y)

]
w=1

= [xmym]
t̃(x, y)2m−n−l

(2m − n)!
√

1 − t1(x, y)t2(x, y)
(2m − n)l t̃k(x, y)l.

Now, we apply Lemma 7.4 to calculate an asymptotic expansion and obtain that the
leading term of E Tmn,k(Tmn,k − 1) · · · (Tmn,k − l + 1) equals

(2m − n)l

t̃(x0, y0)l
t̃k(x0, y0)l = ml(1 + ε)l

(1 − ε2)l

(
2
kk−2

k!
(1 − ε′)ke(ε′−1)k

)l (
1 + O

(
m−1

))
.

Moreover, we conclude that the variance is of order O(m) too, thus its calculation
requires to determine the next term of the asymptotic expansion. We do this in a
semiautomatic way using Maple and obtain the proposed result.

To infer the limiting distribution, we make use of the characteristic function
E eirTmn,k . It is given by

E eirTmn,k = [xmymvn] g◦
k,t(x, y, v, eir)

[xmymvn] g◦(x, y, v)
,

where we can use the simplification

[xmymvn] g◦
k,t(x, y, v, eir) = [xmym]

(
t̃(x, y) + (eir − 1)t̃k(x, y)

)2m−n

√
1 − t1(x, y)t2(x, y)

.

Using a saddle point approach, it is possible to establish the following result, see Ref.
[7] for details. For every k ≥ 1 and for every real number r we have, as m → ∞,

E eir(Tmn,k−μm)/
√

σ2m = e− 1
2 r2

(
1 + O

(
m− 1

2 +δ
))

,

where 0 < δ < 1
6 , what completes the proof. �

7.6 EMPIRICAL DATA

One might argue that our conclusions are based on asymptotic expansions only, thus
it is not certain if the observations hold for practical relevant settings. To overcome
this weak point, we obtained numerical results that are provided in this section.

We start providing some results concerning the phase transition and the “criti-
cal” value ε = 0, for ordinary and symmetric bipartite graphs. Recall that the latter
value corresponds to the relation m = n, that is the number of edges equals half the

www.it-ebooks.info

http://www.it-ebooks.info/

210 THE STRUCTURE OF AN EVOLVING RANDOM BIPARTITE GRAPH

TABLE 7.2 Number of Graphs Containing a Complex Component out of 5 × 105

Graphs Generated for Each Setup

m(= n) 5,000 10,000 50,000 100,000 500,000

Nonbipartite 81,053 83,138 86,563 88,021 89,177
Symmetric bipartite 83,100 85,357 87,972 88,415 89,751

According to Theorem 7.1, we expect a value of 91,752 at the moment the critical value is reached.

number of nodes. From Theorem 7.1, we conclude that the probability that no com-
plex component occurs drops from 1 + O(1/m) to

√
2/3 + o(1). The numerical re-

sults given in Table 7.2 exhibit a similar behavior, see also Tables 7.4 and 7.5. Note
that the observed number of complex components is slightly below the expectation
calculated using the asymptotic approximation. However, the accuracy increases as
the number of nodes increases.

Table 7.3 provides the numerically obtained average number of edges at the mo-
ment before the first bicyclic component is created. From the data given in Table 7.3,
we conclude that this number is only slightly larger than m, except if the asymmetry
is increased. Due to Ref. [13], we know that the first bicyclic component of a usual
random graph appears at “time” m + �

(
m−2/3

)
, what is in accordance with our nu-

merical results. Moreover, we conjure that the same (or a very similar) result holds
for the bipartite graph too. Concerning asymmetric cuckoo hashing, we observe that
the asymmetry reduces the critical ratio of edges and nodes that determines the start
of phase transition.

Next, we consider the complex part of the graph in the subcritical phase. Recall
that we consider the excess of this part of the graph, that is, how many more edges
than nodes it contains. From Theorem 7.1, we deduce that the probability that this
number equals r is given by O(m−r−1). Thus, we expect an exponentially decreasing
pattern. The corresponding results are depicted in Tables 7.4 and 7.5. From the data
given in both the tables, we additionally observe the following properties: for fixed
r > 0 and m, the percentage of graphs with excess r increases as ε decreases. On the
other hand, increasing m while holding ε constant, is likely to decrease the excess.

TABLE 7.3 Average Number of Edges at the Moment When the First Bicyclic
Component Occurs

m 5,000 10,000 50,000 100,000 500,000

Symmetric bipartite 5,208 10,322 50,917 101,440 504,143
Asymmetric, c = 0.1 5,181 10,272 50,661 100,930 501,618
Asymmetric, c = 0.2 5,103 10,118 49,897 99,406 493,992
Asymmetric, c = 0.3 4,972 9,855 48,593 96,800 481,019
Asymmetric, c = 0.4 4,782 9,476 46,704 93,030 462,228
Nonbipartite 5,204 10,318 50,907 101,428 504,133

The table provides numerical data obtained over a sample size of 5 × 105.

www.it-ebooks.info

http://www.it-ebooks.info/

EMPIRICAL DATA 211

TABLE 7.4 The Excess of the Complex Part of a Symmetric Bipartite Graph
Possessing m Nodes of Each Type and n = (1 − ε)m Keys

m ε Excess

1 2 3 4 5 6 7 8 >

0.2: 73,458 3,312 219 18 1
0.1: 283,258 33,842 4,638 778 108 17

500
0.06: 481,752 81,919 16,037 3,213 653 138 24 8 1
0.04: 621,670 125,597 28,221 6,565 1,510 314 106 20 7

0.2: 12,196 119 1
0.1: 93,712 5,359 422 48 2 1

5 × 103

0.06: 253,414 29,837 4,563 780 159 29 7 2
0.04: 421,374 70,795 14,759 3,350 813 237 48 15 6

0.2: 1,286 1
0.1: 14,197 156 2

5 × 104

0.06: 61,276 2,507 159 12 1
0.04: 153,484 12,716 1,491 220 44 6 2

For each setting of m and ε, we use a sample size of 107 and count the graphs according to the excess.
Note that most of the graphs do not have a complex part at all.

Note that these numerical results are in good accordance with the theoretical analysis.
Comparing the two different graph models, we observe that the symmetric bipartite
case usually leads to a lower occurrence of all positive values of excess. Again, this
corresponds well to the findings of our asymptotic analysis.

TABLE 7.5 The Excess of the Complex Part of a Nonbipartite Graph Possessing 2m

Nodes and n = (1 − ε)m Keys

m ε Excess

1 2 3 4 5 6 7 8 >

0.2: 86,462 4,001 271 20 3
0.1: 313,309 37,468 5,407 753 132 24

500
0.06: 522,531 89,481 17,484 3,482 740 156 22 1 2
0.04: 668,026 135,375 30,822 7,073 1,773 386 110 23 5

0.2: 14,043 138 1
0.1: 101,327 5,578 454 47 8 1

5 × 103

0.06: 266,735 31,215 4,898 869 163 35 10 1 1
0.04: 439,806 73,228 15,373 3,604 891 209 63 24 6

0.2: 1,602 1
0.1: 14,965 182 2

5 × 104

0.06: 63,861 2,573 176 7
0.04: 158,141 13,246 1,601 221 25 10 1 1

For each setting of m and ε, we use a sample size of 107 and count the graphs according to the excess.
Note that most of the graphs do not have a complex part at all.

www.it-ebooks.info

http://www.it-ebooks.info/

212 THE STRUCTURE OF AN EVOLVING RANDOM BIPARTITE GRAPH

TABLE 7.6 Number of Trees of Sizes One and Two for ε = 0.1

Isolated Nodes Trees with 2 Nodes

m Sample Rel. Sample Rel. Sample Rel. Sample Rel.
Mean Error (%) Var. Error (%) Mean Error (%) Var. Error (%)

Symmetric bipartite
5 × 103 4,065 0.009 916 0.925 744 −0.015 642 0.205
5 × 104 40,657 0.000 9,279 −0.313 7,439 −0.004 6,406 0.372
5 × 105 406,568 0.000 92,629 −0.138 74,385 −0.001 64,291 0.018

Asymmetric bipartite, c = 0.2
5 × 103 4,132 0.011 895 −0.124 690 −0.011 589 −0.014
5 × 104 41,328 0.001 8,935 0.064 6,901 −0.004 5,970 −1.324
5 × 105 413,280 0.000 88,870 0.599 69,009 0.000 58,446 0.809

Asymmetric bipartite, c = 0.3
5 × 103 4,219 0.020 853 0.135 623 −0.031 523 0.012
5 × 104 42,202 0.002 8,498 0.528 6,226 −0.003 5,206 0.492
5 × 105 422,029 0.001 85,273 0.182 62,255 −0.002 52,370 −0.111

Nonbipartite
5 × 103 4,065 0.009 918 0.712 744 −0.013 641 0.335
5 × 104 40,657 0.000 9,333 −0.891 7,439 −0.001 6,482 −0.803
5 × 105 406,571 −0.000 93,055 −0.598 74,384 0.000 64,603 −0.468

The table provides sample mean and sample variance of the number of trees obtained over a sample of
size 105. Additionally we give the relative error with respect to the asymptotic approximations of
Theorem 7.2.

Table 7.6 displays the average number of trees of size one (isolated nodes) and
two counted during 105 experiments. Further, we consider several different models,
including some asymmetric bipartite settings. Recall that higher asymmetry leads to a
lower maximum load factor, hence some small values for ε would be invalid for some
asymmetric settings. From the data given in Table 7.6, we see that our asymptotic
results are good approximations. In particular, we observe that the symmetric bipartite
and the ordinary model do not only share the same limiting distribution concerning the
number of trees, they also exhibit a indistinguishable behavior in practice. However,
we deduce that asymmetry increases the number of isolated nodes.

Finally, we draw our attention on the structure of cyclic components. Note that
the symmetric bipartite and the ordinary model are again in some sense very similar,
but not identical. Table 7.7 provides numerical data for the number of nodes in cyclic
components and the number of cycles. Our experiments, using settings from m =
5 × 103 up to m = 5 × 105, show that the size of the graph does not have significant
influence on this parameters. Because of this, we do not provide data for different
sizes. From the results presented in Table 7.7, we see again that the asymptotic results
of Theorems 7.3 and 7.4 provide suitable estimates. We notice that asymmetry leads
to an increased number of cycles, and nodes in cyclic components. Furthermore, both

www.it-ebooks.info

http://www.it-ebooks.info/

CONCLUSION AND SUMMARY 213

TABLE 7.7 The Table Shows Sample Mean and Sample Variance of the Number of
Nodes Contained in Cyclic Components and the Number of Cycles

Nodes in Cyclic Components Number of Cycles

ε Sample Rel. Sample Rel. Sample Rel. Sample Rel.
Mean Error (%) Var. Error (%) Mean Error (%) Var. Error (%)

Symmetric bipartite
0.2 8.86 0.326 420.9 0.90 0.509 0.381 0.507 0.732
0.1 42.36 0.649 8,191.8 1.59 0.830 0.079 0.827 0.415

0.06 123.54 2.350 64,162.5 7.37 1.069 0.625 1.066 0.876
0.04 279.76 4.803 307,422 15.49 1.268 0.367 1.270 0.269

Asymmetric bipartite, c = 0.2
0.2 11.01 −0.050 619.7 1.94 0.549 0.043 0.548 0.311
0.1 65.66 1.940 19,211.2 3.89 0.924 0.394 0.917 1.234

0.06 272.48 5.264 292,639 16.07 1.257 0.680 1.258 0.561
0.04 897.51 25.207 2590,900 56.16 1.568 2.576 1.551 3.660

Asymmetric bipartite, c = 0.3
0.2 15.00 0.052 1,132.7 0.135 0.608 −0.041 0.610 −0.465
0.1 143.88 1.865 86,487.5 6.546 1.11 −0.144 1.100 0.409

0.06 1,353.49 42.292 5,116,340 77.17 1.689 4.558 1.650 6.758

Nonbipartite
0.2 9.95 0.507 445.3 1.05 0.801 0.496 0.802 0.377
0.1 44.81 0.422 8,375.5 2.04 1.149 0.241 1.150 0.137

0.06 127.24 2.543 65,382.4 7.07 1.406 0.046 1.406 0.041
0.04 284.33 5.223 305,917 16.8 1.612 −0.140 1.603 0.380

We provide numerically obtained results using a sample of size 105 and give the relative error with
respect to the asymptotic approximations of Theorems 7.3 and 7.4. All depicted values are obtained using
a fixed table size determined by the parameter m = 5 × 105, but our numerical data obtained using
different table sizes are almost identical.

parameters are higher if we consider the ordinary model instead of the symmetric
bipartite version.

7.7 CONCLUSION AND SUMMARY

We considered the growth process of sparse random bipartite graphs. Our analysis was
based on a generating function approach by applying a double saddle point method.
Thus, we obtained asymptotic results concerning the component structure of the
graph. In particular, we considered the distribution of the number of tree components
of given size, the number of cycles, and the number of nodes contained in cycles, and
the probability that components of certain complexity occur. Hence, we showed that
it is very likely that the graph consists of trees and unicyclic components only, if the
number of edges is less than a critical value. Using further calculations, we obtained
a Gaussian limit law for the number of trees, and limiting Poisson distribution for

www.it-ebooks.info

http://www.it-ebooks.info/

214 THE STRUCTURE OF AN EVOLVING RANDOM BIPARTITE GRAPH

the number of cycles. Finally, we provided some results concerning the critical value,
where a phase transition occurs.

We considered both symmetric bipartite graphs possessing an equal number of
nodes of both kinds as well as an asymmetric model. Furthermore, we provided cor-
responding results concerning nonbipartite graphs and found substantial similarities.
Finally, we provided numerical results, which positively supported our theoretical
hypothesis.

As future work, we suggest a detailed analysis of the partial differential recursion
of the generating functions of complex bipartite graphs with positive excess. Using
these results, it will be possible to study the phase transition in full detail, similar to
the analysis given in Ref. [3].

REFERENCES

1. B. Bollobás, Random Graphs, 2nd edn. Cambridge University Press, Cambridge, UK,
2001.

2. S. Janson, T. Łuczak, A. Rucinski, Random Graphs, Wiley, New York, 2000.

3. S. Janson, D.E. Knuth, T. Łuczak, B. Pittel. The birth of the giant component. Random
Struct. Algor. 4(3), 233–359 (1993).

4. J. Blasiak, R. Durrett, Random oxford graphs. Stochastic Process. Appl. 115(8), 1257–1278
(2005).

5. R. Pagh, F.F. Rodler. Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004).

6. L. Devroye, P. Morin, Cuckoo hashing: further analysis. Inform. Process. Lett. 86(4), 215–
219 (2003).

7. M. Drmota, R. Kutzelnigg, A precise analysis of cuckoo hashing. ACM Trans. Algorithms
8(2), (2012).

8. A. Kirsch, M. Mitzenmacher, U. Wieder, More robust hashing: cuckoo hashing with a
stash, in Proceedings of the 16th Annual European Symposium on Algorithms, 2008.

9. R. Kutzelnigg, Bipartite random graphs and cuckoo hashing, in Proceedings of the 4th
Colloquium on Mathematics and Computer Science, Discrete Mathematics and Theoretical
Computer Science, pp. 403–406, 2006.

10. R. Kutzelnigg, Random Graphs and Cuckoo Hashing, Südwestdeutscher Verlag für
Hochschulschriften, Saarbrücken, 2009.

11. R. Kutzelnigg, A further analysis of cuckoo hashing with a stash and random graphs of
excess r. DMTCS 12(3), 81–102 (2010).

12. R. Kutzelnigg, An improved version of cuckoo hashing: average case analysis of construc-
tion cost and search operations. Math. Comput. Sci. 3(1), 47–60 (2010).

13. P. Flajolet, D.E. Knuth, B. Pittel, The first cycles in an evolving graph. Discrete Math.
75(1–3), 167–215 (1989).

14. I.B. Kalugin, The number of components of a random bipartite graph. Discrete Math. Appl.
1(3), 289–299 (1991).

15. O. Gimenez, A. de Mier, M. Noy, On the number of bases of bicircular matroids. Ann.
Comb. 9(1), 35–45 (2005).

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 215

16. P. Flajolet, R. Sedgewick, Analytic Combinatorics, Cambridge University Press, Cam-
bridge, UK, 2009.

17. M. Drmota, A bivariate asymptotic expansion of coefficients of powers of generating
functions. Eur. J. Combin. 15(2), 139–152 (1994).

18. D. Gardy, Some results on the asymptotic behaviour of coefficients of large powers of
functions. Discrete Math. 139(1–3), 189–217 (1995).

19. I.J. Good, Saddle-point methods for the multinomial distribution. Ann. Math. Stat. 28(4),
861–881 (1957).

20. M. Drmota, M. Soria, Marking in combinatorial constructions: generating functions and
limiting distributions. Theor. Comput. Sci. 144(1&2), 67–99 (1995).

21. M. Drmota, M. Soria, Images and preimages in random mappings. SIAM J. Discrete Math.
10(2), 246–269 (1997).

22. P. Flajolet, A.M. Odlyzko, Random mapping statistics. LNCS 434, 329–354 (1990).

www.it-ebooks.info

http://www.it-ebooks.info/

8
GRAPH KERNELS

Matthias Rupp

Graph kernels are formal similarity measures defined directly on graphs. Because they
are positive semidefinite functions, they correspond to inner products. This property
makes them suitable for use with kernel-based machine learning algorithms, such as
support vector machines and Gaussian processes. In this chapter, I present different
types of graph kernels (based on random walks, shortest paths, tree patterns, cyclic
patterns, graphlets, and optimal assignments), give an overview of successful applica-
tions in bio- and cheminformatics, and discuss advantages and limitations of kernels
between graphs.

8.1 INTRODUCTION

Graphs are highly versatile data structures [1] that are used in a wide range of research
areas. Consequently, the comparison of two graphs is a problem with many applica-
tions. Examples include cheminformatics [2,3], bioinformatics [4], sociology [5,6],
telecommunication (e.g., the internet), computer vision [7], and natural language
processing [8].
Typical approaches for comparing two graphs are based on

(i) comparing sets of vertices and edges, which is fast (runtime often scales
linearly or quadratically in the size of the graphs), but neglects graph topology,

(ii) mining frequent or discriminative subgraphs, which can be slow (with poten-
tially exponentially many subgraphs to be considered),

Statistical and Machine Learning Approaches for Network Analysis, Edited by Matthias Dehmer and
Subhash C. Basak.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

217

www.it-ebooks.info

http://www.it-ebooks.info/

218 GRAPH KERNELS

(iii) graph kernels, which constitute a trade-off between runtime and discrimina-
tive power.

Another possibility [9] is to categorize graph (dis)similarity measures into those based
on (sub)graph isomorphism [10,11] (e.g., Zelinka distance [12], or, distances based
on largest common subgraph and smallest common supergraph [13]), graph transfor-
mations (e.g., edit distance [14]), adjacency matrices [15], grammars [16], and others.
Yet another view is to distinguish between the approaches that construct explicit fea-
tures, such as graph invariants, and those that perform implicit comparisons, such as
graph kernels. The latter are thus a special case of graph similarity measures.

Informally, a graph kernel is a function defined directly on two graphs that corre-
sponds to an inner product, that is, it encodes geometrical information such as length
and angle between representations of two graphs in some vector space. Through this
property, a graph kernel allows the complete repertoire of kernel-based machine learn-
ing to be used directly with graphs as inputs, an approach that has proved to be fruitful
in a large number of real-world applications.

This chapter gives an overview of graph kernels. The rest of the introduction reca-
pitulates the idea of kernel-based machine learning, introduces the concept of a graph
kernel, and discusses the basic computational aspects. The following sections present
major types of graph kernels, followed by applications in bio- and cheminformatics.
The chapter ends with a discussion of the advantages and disadvantages of graph
kernels.

8.1.1 Kernel Learning in a Nutshell

The two key ideas of kernel-based machine learning are to (nonlinearly) transform
the input data, and to do inference implicitly in the transformed space.

Figure 8.1 illustrates the utility of transforming input samples into another space.
For real-world data, the right transformation is usually not known in advance, although
domain knowledge can aid in choosing a good transformation. Fortunately, good

–2π 2π–π π–2π 2π–π π0
x ⎟⎟→ x

–1

1
sinx

Feature spaceInputspace

(a) (b)

FIGURE 8.1 The utility of input transformations. In the original one-dimensional input space
(a), samples are not linearly separable (there is no point such that all filled circles are on one
side, and all empty circles are on the other side). In the transformed space (b), obtained by
adding another dimension that is the sine of the original one, samples are linearly separable
(there is a line, the x-axis, that separates both classes).

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION 219

default transformations are available, for example, the radial basis function kernel
(also called Gaussian kernel, or squared exponential kernel).

Usually, it is computationally not feasible to run a machine learning algorithm
directly in the transformed space due to its high dimensionality; sometimes, it is
outright impossible, for example, for transformations into infinite-dimensional vec-
tor spaces. With the kernel trick, one solves this problem by rewriting the machine
learning algorithm in question such that it uses only inner products between the input
samples.1 The key observation is that there exists a class of functions (the “kernels” in
kernel-based learning) that can be computed in the original input space, but yield the
same result as the inner product in the transformed space. Replacing all inner product
evaluations with a kernel results in an algorithm that performs implicit computations
in feature space (but does only explicit calculations in the original input space).

As an example, consider the polynomial kernel of degree 2 on three-dimensional
input samples,

k : R3 × R3 �→ R, k
(
x, x′) = 〈

x, x′〉2
. (8.1)

The kernel k can be computed in the original input space (Eq. 8.2a), but yields the
same result as computing the inner product in a six-dimensional vector space given
by the transformation φ(x) = (x2

1, x
2
2, x

2
3,

√
2x1x2,

√
2x1x3,

√
2x2x3) (Eq. 8.2b),

k
(
x, x′) = 〈

x, x′〉2 = (x1x
′
1 + x2x

′
2 + x3x

′
3)2 (8.2a)

= x2
1x

′2
1 + x2

2x
′2
2 + x2

3x
′2
3 + 2x1x

′
1x2x

′
2 + 2x1x

′
1x3x

′
3 + 2x2x

′
2x3x

′
3

= 〈
(x2

1, x
2
2, x

2
3,

√
2x1x2,

√
2x1x3,

√
2x2x3),

(x′2
1 , x′2

2 , x′2
3 ,

√
2x′

1x
′
2,

√
2x′

1x
′
3,

√
2x′

2x
′
3)

〉 = 〈
φ(x), φ(x′)

〉
. (8.2b)

In general, a kernel is a symmetric positive definite function k : X × X → R, where
X is a finite set (the input space). A positive definite function corresponds to an inner
product in some Hilbert space H, that is, there is a transformation φ : X → H such
that k

(
x, x′) = 〈

φ(x), φ(x′)
〉

[17]. Note that the transformation φ need not be unique,
and that no structural assumptions are made with respect to X; in particular, X need
not be a vector space. For further information on kernel-based machine learning, see
the literature [17–20].

8.1.2 Graph Kernels

A graph kernel is a kernel defined directly on graphs, that is, a symmetric positive
definite function k : G × G → R, where G is a nonempty set of graphs.

Note that technically, this definition includes kernels that use an explicit interme-
diate vector representation, that is, kernels that first construct a vector representation
of the input graphs, and then apply a vector-based kernel. An example of such an

1This is possible because the inner product encodes geometrical information about the distance and angle
between two vectors.

www.it-ebooks.info

http://www.it-ebooks.info/

220 GRAPH KERNELS

approach is the graphlet spectrum (Section 8.7). While all graph kernels implicitly
represent graphs as vectors in some inner product space, most do not do so explicitly.
I will use the term graph kernel in the more narrow sense of a kernel that is defined
directly on the input graphs, without any explicit intermediate vector representation.

Graph kernels are kernels between two graphs, and are different from, but related
to, kernels on graphs, that is, kernels defined on the vertices of a single graph, such
as the diffusion kernel [21,22], the regularized Laplacian kernel [23], or the von
Neumann kernel [24]. In this chapter, only kernels between graphs, and no kernels
between graph vertices, trees, and (graphical) generative models [25,26] have been
considered.

Table 8.1 presents an overview of graph kernels, sorted by first publication year.

8.1.3 Computational Considerations

All graph kernels are by necessity a trade-off between discriminative capability and
computational speed. To see this, consider the notion of a complete graph kernel:
two graphs G = (V, E) and G′ = (V ′, E′) are isomorphic if they are identical up to a
relabeling of their vertices,

G � G′ ⇔ ∃ π : V → V ′ ∀(u, v) ∈ V × V : (u, v) ∈ E ⇔ (π(u), π(v)) ∈ E′.
(8.3)

Let k(G, G′) = 〈
φ(G), φ(G′)

〉
, where φ : G/� → H maps from the quotient set G/�

of all graphs with respect to isomorphism into some Hilbert spaceH. The graph kernel
k is complete if φ is injective, that is, if it can distinguish between all nonisomorphic
graphs. Gärtner et al. [58] have shown that computing any complete graph kernel is
at least as hard as deciding whether two graphs are isomorphic. The latter problem is

TABLE 8.1 Graph Kernels, Listed in Order of First
Publication Year

Year Graph Kernel References

2003 Marginalized graph kernels [27–30]
2004 Cyclic pattern kernels [31,32]
2005 Shortest path kernels [33]
2005 Optimal assignment kernels [34–41]
2005 Fingerprint kernels [42,43]
2005 Decomposition kernels [44,45]
2006 Matching-based kernels [46–48]
2007 Complement graph kernels [49]
2008 Point cloud kernels [50]
2008 Graphlet kernels [51–53]
2009 Finite length random walk kernels [54]
2009 Tree pattern kernels [55,56]
2009 Neighborhood hash kernels [57]

www.it-ebooks.info

http://www.it-ebooks.info/

CONVOLUTION KERNELS 221

believed to have complexity between P and NP for general graphs2 [60]. Thus, there
is no graph kernel for general graphs that is both complete and efficient.

8.2 CONVOLUTION KERNELS

Many kernels for structured data, including, but not limited to graphs, are based on
the idea of convolution kernels introduced by Haussler in 1999 [62].3

8.2.1 Definition

Assume that a sample x ∈ X can be decomposed into parts x1, . . . , xd ∈ X1, . . . ,Xd ,
for example, a decomposition of a graph into subgraphs. Here, X,X1, . . . ,Xd are
nonempty, separable metric spaces. The relation R indicates possible decompositions,
where R(x, x1, . . . , xd) is true if and only if x can be decomposed into x1, . . . , xd .
Given positive definite kernels ki : Xi × Xi → R, 1 ≤ i ≤ d, the convolution kernel

(k1 × · · · × kd)(x, x′) =
∑
R

d∏
i=1

ki(xi, x
′
i) (8.4)

is positive definite for finite R [62]. The sum runs over all decompositions of x and x′
into d parts for which R is true; if a sample cannot be decomposed, the sum is zero.
Random walk kernels, path-based kernels, tree kernels, and cyclic pattern kernels are
convolution kernels.

8.2.2 Variants and Extensions

Vishwanathan et al. [64] point out that “there have been a few attempts to extend R-
convolution kernels to abstract semirings.” A semiring (S, ⊕, ⊗, 0, 1) is an algebraic
structure that consists of a set S, a commutative associative addition ⊕ with iden-
tity element 0, and an associative multiplication ⊗ with identity element 1, where
multiplication distributes over addition, and 0 ⊗ a = a ⊗ 0 = 0 for all a ∈ S. In a
semiring, Equation 8.4 becomes

(k1 × · · · × kd)(x, x′) =
⊕
R

d⊗
i=1

ki(xi, x
′
i). (8.5)

See Section 8.8.3 for an example.

2Note that for many specialized graph classes, graph isomorphism is in P [59,60]. Also, for a suitable
distribution on graphs, graph isomorphism is efficiently solvable in expected polynomial time [61].
3Structured data kernels also relate to work by Watkins on dynamic alignment kernels [63], also in 1999,
although his work is not as directly related to graph kernels.

www.it-ebooks.info

http://www.it-ebooks.info/

222 GRAPH KERNELS

8.3 RANDOM WALK GRAPH KERNELS

The idea of random walk graph kernels is to perform random walks on two graphs
and compare the resulting label sequences. They can be seen as kernels on label
sequences marginalized with respect to these random walks, and thus are also called
marginalized graph kernels. Specific kernels differ in their random walk model and
the kernels used to compare vertex and edge labels. Random walk kernels include
label sequence kernels [28,58], marginalized graph kernels [27], and geometric graph
kernels [65].

8.3.1 Definition

A random walk on a graph G (Fig. 8.2) starts in vertex x1 ∈ V with probability ps,
goes from xi−1 to xi with transitional probability pt conditional on xi−1, and ends
with probability pq. A random walk instance x = x1 · · · xl has probability

P(x | G) = ps(x1)
(l∏

i=2

pt(xi|xi−1)
)
pq(xl). (8.6)

Default choices are ps(vi) = |V |−1, pq(vi) = c for a small constant 0 < c ≤ 1, and,
pt(vi|xi−1) = 1−c

d(xi−1) , where d(v) is the degree of v. The random walk x has label
sequence hx = � (x1) � ({x1, x2}) � (x2) · · · � (xl), where � (·) denotes the label of a
vertex or edge. The probability of a label sequence is the sum of the probabilities of
all random walks that generate it. A kernel on label sequences of equal length is given
by the product of the label kernels

kz(hx, h
′
x) = kv(h1, h

′
1)

l−1∏
i=1

ke(h2i, h
′
2i)kv(h2i+1, h

′
2i+1). (8.7)

O
3 C

1

O
2

C
4 C

5

C
6 C

7

C
8 C

9

Heptanoic acid

C 7

C
5

C
9

C
4 C

6

C
8

O
3

C
1

O
2

1,3-Benzodioxole

FIGURE 8.2 Random walks on two molecular structure graphs. Vertices are labeled with
element type, edges with covalent bond type (– single, = double, |(aromatic). Using only vertex
labels, the random walks 12131456 on the left graph and 53124689 on the right graph both pro-
duce the label sequence COCOCCCC. Taking edge labels into account (s = single, d = double,
a = aromatic) leads to different label sequences CdOdCsOsCsCsCsC and CsOsCsOsCaCaCaC
of the same random walks. The tottering walks 13131414 and 42424646 reproduce the first
label sequence, but use only three vertices.

www.it-ebooks.info

http://www.it-ebooks.info/

RANDOM WALK GRAPH KERNELS 223

For different lengths, kz(hx, h
′
x) = 0. A (label sequence) random walk graph kernel

is given by the expectation of kz over all possible label sequences:

k(G, G′) =
∑
h,h′

kz(h, h′)P(h | G)P
(
h′ ∣∣ G′) . (8.8)

For non-negative kv and ke, Equation 8.8 is positive definite [28]. It is an example of
a marginalized kernel [27], that is, a kernel between visible and hidden variables—
here, graphs and random walks—computed by taking the expectation over the hidden
variables.

An alternative formulation is based on the observation that simultaneous random
walks on G and G′ correspond to one random walk on the direct product graph G × G′
and vice versa [1,49,64]. The start, transition, and stop probabilities of G × G′ are
the products of the corresponding probabilities of G and G′,

p×
s

({xi, x
′
j}

) = ps(xi)ps(x
′
j), (8.9)

p×
q

({xi, x
′
j}

) = pq(xi)pq(x′
j), (8.10)

p×
t

({xi, x
′
j}

∣∣{xi−1, x
′
j−1}

) = pt(xi|xi−1)pt(xj|xj−1). (8.11)

8.3.2 Computation

For acyclic graphs, Equation 8.8 can be computed using topological sorting and
dynamic programming in time O

(
c c′ |V | |V ′|), where c, c′ are the maximum vertex

degrees in G and G′. In the general case, Equation 8.8 can be computed by solving a
system of linear equations, or, equivalently, by inverting a sparse |V | |V ′| × |V | |V ′|
matrix. In both cases, the number of nonzero coefficients is upper-bounded by
c c′ |V | |V ′|. The solution exists if a convergence condition on the involved proba-
bilities and kernels is met. For random walk models with constant pq(·) = γ , the
requirement is kv(·, ·)ke(·, ·) < 1

(1−γ)2 , which is met if 0 ≤ kv, ke ≤ 1. The solution
can be computed using matrix power series [66], fixed point iterations [28], the
Sylvester or Lyapunov equation [64], or, conjugate gradient methods [49] in time
O(n3), where n = max(|V |, |V ′|).

8.3.3 Variants and Extensions

Tottering is the immediate revisiting of a vertex, that is, xi = xi+2 for some i (Fig. 8.2).
Such excursions are likely to be uninformative and to add noise, particularly because
the ratio of tottering to nontottering walks increases rapidly. It can be prevented by
switching to second-order Markov random walks [30]. Halting [1] describes the dom-
inance of short walks due to the diminishing probability of longer walks (the decay
factor in other formulations of random walk kernels). Path-based graph kernels have
been proposed to counter the effects of tottering and halting ([1]; see Section 8.4). In
label enrichment, contextual information is embedded into the labels using the Mor-
gan index, which improves computation time by decreasing the number of common

www.it-ebooks.info

http://www.it-ebooks.info/

224 GRAPH KERNELS

paths while still giving comparable performance on test data sets [67]. In analogy to
sequence matching, gaps can be allowed when comparing walks [54,58].

8.4 PATH-BASED GRAPH KERNELS

Path-based graph kernels are similar to random walk kernels, but use paths instead of
walks. A path is a walk that contains each vertex at most once. Path kernels therefore
do not suffer from either tottering (by definition) or halting, as the number of paths is
finite and paths thus do not have to be downweighted to ensure convergence. Through
this, path-based kernels have one free parameter less than random walk graph kernels.

8.4.1 Definition and Computation

Let P(G) denote the set of all paths in G, and let kz be a kernel defined on the
corresponding label sequences as in Equation 8.7. The all-paths graph kernel

k(G, G′) =
∑

p∈P(G)
p′∈P(G′)

kz(p, p′), (8.12)

is an R-convolution kernel [1], and therefore positive definite. However, enumerating
all paths in a graph is NP-hard, as it would allow to decide whether a graph contains a
Hamiltonian path (a path that visits each vertex once), a known NP-complete problem
[1]. The same reasoning holds for the restriction to longest paths.

Shortest paths, however, can be computed in polynomial time [68], for example,
by the Floyd–Warshall algorithm, which solves the all-pairs-shortest path problem in
time O(|V |3). Let G = (V, E) denote an edge-weighted graph. Its shortest-path graph
G̃ = (V, Ẽ) has an edge between two vertices if and only if there is a path between
them; the weight of the edge is the distance between the two vertices. The shortest
path graph kernel

k(G, G′) =
∑
ẽ∈Ẽ
ẽ′∈Ẽ′

ke(ẽ, ẽ′) (8.13)

is an R-convolution kernel [1], where ke is a kernel on edges. We exclude cycles
with negative edge weights, as these would lead to shortest paths of length −∞. If
G is connected then G̃ has |V |2 edges, and the pairwise comparison of all edges in
Equation 8.13 leads to a runtime of O(|V |4). In practice, this can be faster than the
cubic runtime of random walk kernels due to a smaller constant [1].

Path kernels lead to a full matrix representation of (connected) graphs, which might
be problematic for larger graphs. They also ignore information from longer paths. The
notion of shortest paths seems most meaningful if edge labels are distances of some
kind.

www.it-ebooks.info

http://www.it-ebooks.info/

TREE-PATTERN GRAPH KERNELS 225

8.4.2 Variants and Extensions

Label enrichment (Section 8.3.3) can be done by labeling vertices and edges with
additional information. Since shortest paths are not unique, additional criteria might
be required, for example, one might consider only shortest paths with minimum
number of edges. As an example, in the equal length shortest path kernel, kernel
values are set to zero for pairs of shortest paths with different numbers of edges,
saving on the evaluation of vertex and edge kernels.

In case the shortest path does not contain enough information, other short paths can
be taken into account at the expense of runtime cost. In principle, any algorithm that
finds k loopless shortest paths [69,70] can be used for this, resulting in k-shortest paths
kernels. As an example, on a connected graph the algorithm by Yen [69] takes time
O(k|V |5 + k2|V |4) [1]. Repeated use of Dijkstra’s algorithm [68], followed each time
by removal of the found shortest path, leads to the k-disjunct shortest paths kernel,
with runtime in O(k|V |4) for connected graphs [33].

8.5 TREE-PATTERN GRAPH KERNELS

Tree-based graph kernels [55] compare subtrees of graphs.

8.5.1 Definition

Let G = (V, E) be a graph and let T = (W, F), W = {w1, . . . , wt} be a rooted directed
tree. A tree pattern of G with respect to T consists of vertices v1, . . . , vt ∈ G such
that

� (vi) = � (wi) for 1 ≤ i ≤ t

and {vi, vj} ∈ E ∧ �
({vi, vj}

) = �
(
(wi, wj)

)
for (wi, wj) ∈ W

and j /= k ⇔ vj /= vk for (wi, wj), (wi, wk) ∈ W.

(8.14)

Each vertex w in the tree is assigned a vertex v in the graph such that edges and labels
match. The v1, . . . , vt need not be distinct, as long as vertices assigned to sibling
vertices in T are distinct (Fig. 8.3). The tree pattern counting function ψ(G, T) returns

O
2

C
1

O
3

C

(a) (b)

4

Acetic acid

C
1

O
3

O
2

C
4

C
1

C
4

Tree pattern

FIGURE 8.3 Tree patterns. Shown are the annotated graph of acetic acid (a) and a tree pattern
contained in it (b). Numbers indicate assigned vertices. Note that vertices 1 and 4 appear twice;
this is the equivalent of tottering in random walk kernels.

www.it-ebooks.info

http://www.it-ebooks.info/

226 GRAPH KERNELS

the number of times the tree pattern T occurs in the graph G, that is, the number of
distinct tuples (v1, . . . , vt) that are tree patterns of T in G.

Let G = (V, E), G′ = (V ′, E′) be graphs, let T be a set of trees, and, let
w : T → R+ weight the trees in T. Then

k(G, G′) =
∑
T∈T

w(T)ψ(G, T)ψ(G′, T) (8.15)

is positive definite as it corresponds to a weighted inner product in the feature space
indexed by the trees in T. Specific examples of w include weighting by size w(T) =
λ|T |−h and by branching cardinality w(T) = λbranch(T) for balanced trees T of order h,
where |T | denotes the number of vertices in T and branch(T) denotes branching
cardinality. The parameter λ controls the weight put on complex tree patterns: more
weight is put on them for λ > 1, and less for λ < 1. In the limit of λ → 0, only linear
trees have nonzero weight, and the two kernels converge to the walk counting kernel.
The branching cardinality weighting scheme can be extended to arbitrary trees of
depth up to h.

8.5.2 Computation

Mahé and Vert [55] show how to compute such kernels using dynamic programming
and the notion of neighborhood matching sets in time O

(|V | |V ′| h c2c
)
, where c

denotes the maximum vertex degree. Tottering (Fig. 8.3) can be prevented by addi-
tional constraints on ψ, where algorithms can be retained by transforming the input
graphs, increasing runtime by a factor of

(|V | + |E|)(|V ′| + |E′|)
|V | |V ′| . (8.16)

8.5.3 Variants and Extensions

Shervashidze and Borgwardt [56] use the “naive vertex refinement” version of the
Weisfeiler–Lehman graph isomorphism test [71] to define a fast graph kernel that
compares subtrees of (labeled) graphs. The test iteratively constructs multisets of label
strings si(v) that describe the neighborhood of each vertex; it terminates if either the
multisets of the two graphs differ in any given round, or the maximum number h of
iterations is reached. Consequently, the number of distinguishable isomorphic graphs
depends on the free parameter h. The Weisfeiler–Lehman graph kernel simply counts
the multiset strings common to both graphs:

k
(
G, G′) =

∣∣∣{(
si(v), si(v

′)
)∣∣∣

f
(
si(v)

) = f
(
si(v

′)
)
, 1 ≤ i ≤ h, v ∈ V, v′ ∈ V ′

}∣∣∣, (8.17)

where f is an injective function that compresses strings of concatenated labels. For
two graphs, this kernel can be computed in time O(h |E|) using bucket sort [68] to

www.it-ebooks.info

http://www.it-ebooks.info/

CYCLIC PATTERN KERNELS 227

exploit the bounded size of the label alphabet (and thus strings over it) in various
sorting steps of the algorithm. The simultaneous computation of a kernel matrix for
n graphs can be done in time O(n h max{|E1|, . . . , |En|} + n2h max{|V1|, . . . , |Vn|})
by using hashing to speed up label compression.

8.6 CYCLIC PATTERN KERNELS

Cyclic pattern graph kernels [31,32] are based on the idea of mapping graphs to sets
of cyclic and tree pattern strings that are compared using the intersection kernel.

8.6.1 Definition

A subgraph is a simple cycle if it is connected and each vertex has degree 2. Let
S(G) denote the set of simple cycles in a graph G. An edge not belonging to a
simple cycle is a bridge. We denote the subgraph of all bridges in G, which is a
forest, by B(G) (Fig. 8.4). Let π be a mapping, computable in polynomial time, from
the set of labeled simple cycles and trees to label strings that is injective modulo
isomorphism. Note that such a mapping can always be constructed [31,72]. The sets
of cyclic and tree patterns are given by C(G) = {

π(C)
∣∣ C ∈ S(G)

}
and T (G) ={

π(T)
∣∣ T is a connected component of B(G)

}
. The cyclic pattern kernel is given by

k(G, G′) = k∩
(
C(G), C(G′)

) + k∩
(
T (G), T (G′)

)
, (8.18)

where k∩(S, S′) = ∣∣S ∩ S′∣∣ denotes the intersection kernel.

C
22

C
24

C
20

C

25

C
23

C
21

O
26

C

27

S
17

O
19

O
18

N16

C
13

C
15

C
14

C
11

C
9

C
8

C
10

C
12

O
7C

6

C
5

C
4

2

3

C
O

O

FIGURE 8.4 Cyclic and tree patterns of the molecular structure graph of indeglitazar. Shown
are vertices belonging to simple cycles (shaded) and to bridges (white).

www.it-ebooks.info

http://www.it-ebooks.info/

228 GRAPH KERNELS

8.6.2 Computation

Computing Equation 8.18 is at least as hard as counting simple cycles in a graph, which
is computationally not tractable if P /= NP [73]. For graphs with a small number of
simple cycles, Equation 8.18 can be computed via enumeration of B, T , S, C [31].
The number of cyclic and tree patterns in a graph can be exponential in |V |, leading
to computational infeasibility of the cyclic pattern kernel for general graphs [31]. The
restriction of inputs to graphs with few simple cycles can be relaxed to graphs of
bounded treewidth, for which many NP-complete problems become tractable [74].
For graphs of constant bounded treewidth, Equation 8.18 can be computed in time
polynomial in max

{|V |, |V ′|, |C(G)|, |C(G′)|} [32].

8.6.3 Variants and Extensions

An alternative relaxation is to consider a different class of cycles. Horváth [32] uses
algebraic graph theory to compute the cyclic pattern kernel on monotone increasing
subsets of simple cycles generated by relevant cycles [75], with a similar runtime
bound, but with different cyclic patterns. The number of relevant cycles is exponential
in the worst case; for molecular graphs, it is typically cubic in |V | [76].

8.7 GRAPHLET KERNELS

Graphlet kernels are based on the idea of randomly sampling small (connected) sub-
graphs of size k ∈ {3, 4, 5}. These samples can then be used to compare frequency
distributions (count-based approach [52]) or to construct graph invariants (algebraic
approaches, e.g., skew spectrum [51], graphlet spectrum [53]). This type of kernel is
suited for the comparison of larger graphs with hundreds of vertices and thousands
of edges.

8.7.1 Definition

Let G1, . . . , GN denote a set of graphs of size k ∈ {3, 4, 5}, the graphlets. We explic-
itly construct a feature space of dimension N via the k-spectrum

φ(G) = (
#(G1 � G), . . . , #(GN � G)

)
, (8.19)

where #(H � G) denotes the number of embeddings of H in G. The (count-based)
graphlet kernel is the inner product in this space,

k(G, G′) = 〈
φ(G), φ(G′)

〉
. (8.20)

www.it-ebooks.info

http://www.it-ebooks.info/

GRAPHLET KERNELS 229

To remove the dependency on the size of G, we normalize the count vector φ to a
probability vector, yielding the normalized graphlet kernel

k(G, G′) =
〈
||φ(G)||−1

1 φ(G), ||φ(G′)||−1
1 φ(G′)

〉
. (8.21)

Isomorphic graphs have the same graphlet k-spectrum. Whether the reverse holds is
currently not known.4

8.7.2 Computation

Computing Equation 8.20 or 8.21 requires counting all
(|V |

k

) = O(|V |k) graphlets.
By sampling a sufficient number of graphlets, one can approximate the result with a
given confidence. Shervashidze et al. [52] state (without proof) that the L1 distance
between the empirical and the true distribution of graphlets in a graph exceeds ε with
probability at most δ for ⌈

2
(
N ln 2 + ln(1

δ
)
)

ε2

⌉
(8.22)

or more samples, assuming that the number of occurrences of a graphlet (up to iso-
morphism) are independent and identically distributed. Here, N denotes the number
of all size k graphlets. For graphs with bounded vertex degree, all connected graphlets
can be enumerated in O(|V | ck−1) for k ∈ {3, 4, 5}, where c is the maximum vertex
degree in the graph [52]. The computation is based on a partitioning of the graphlets
into those that contain a simple path of length k − 1, and those that do not.

8.7.3 Variants and Extensions

In an algebraic approach, Kondor and Borgwardt [51] define the skew spectrum of a
graph, a fixed-size set of graph invariants. This explicit vectorial representation of a
graph can be computed in time O(|V |6) for the full version with 85 components, and
in time O(|V |3) for the reduced version with 49 components. Its derivation and com-
putation are based on Kakarala’s results [79] on the bispectra of functions on compact
groups, and Young’s orthonormal representation. The skew spectrum is limited in its
representational power due to its fixed size, and in that it does not consider vertex
and edge labels. In further work, they introduce the graphlet spectrum of a graph
relative to a set of given graphlets [53]. In contrast to the graphlet kernel, the graphlet
spectrum takes the relative positions of graphlets into account, and considers vertex
and edge labels.

4This problem is related to another open problem, the graph reconstruction problem, which asks whether
a graph can be reconstructed from the multiset of all of its subgraphs obtained by deleting one vertex. For
graphs up to size |V | = 11, this has been verified [77], and it has been shown that almost every (random)
graph can be reconstructed from three such subgraphs [78]. Note, however, that normally k � |V |.

www.it-ebooks.info

http://www.it-ebooks.info/

230 GRAPH KERNELS

O

(a) (b)

1

C
3

O
2

C
4N

5

Glycine

O
1

C
3

O
2

C
4N

5

C
6

O
7

Serine

7654321

1 0.98 0.500.000.000.000.000.50

0.502 0.98 0.890.170.340.160.11

0.110.003 0.96 0.130.780.140.68

0.670.240.004 0.81 0.200.770.17

0.130.140.330.005 0.91 0.380.20

Pairwise vertex similarities

FIGURE 8.5 The ISOAK optimal assignment kernel [37] between the molecular structure
graphs of glycine (a) and serine (b). Vertex assignments are shown boxed. Note how pairwise
vertex similarities are highest in the identical parts of the graphs and slowly die off toward
vertices 6 and 7.

8.8 OPTIMAL ASSIGNMENT KERNELS

Optimal assignment kernels were proposed in the context of cheminformatics5 [34].
Their idea is to optimally assign vertices between graphs based on pairwise vertex
similarities. Variants of these kernels differ in the type of pairwise vertex similarity
used.

8.8.1 Definition

Let G = (V, E) and G′ = (V ′, E′) be two graphs, and assume without loss of gener-
ality that |V | ≤ |V ′|. Based upon a measure kG,G′ of similarity6 between the vertices
of G and G′, the optimal assignment kernel injectively assigns the vertices of V

to vertices of V ′ such that the total similarity between the assigned vertices is maxi-
mized (Fig. 8.5):

koa(G, G′) = max
π

|V |∑
i=1

kG,G′ (vi, v
′
π(i)). (8.23)

5The idea of “aligning” two graphs has been rediscovered in various contexts, for example, in cheminfor-
matics [80], bioinformatics [81], and applied mathematics [82].
6Note that we allow kG,G′ : V × V ′ → R+ to depend on G and G′.

www.it-ebooks.info

http://www.it-ebooks.info/

OPTIMAL ASSIGNMENT KERNELS 231

The maximum is over all possible assignments π of the vertices in V to vertices in
V ′, that is, all prefixes of length |V | of permutations of size |V ′|. To prevent the value
of the kernel depending on the size |V | of the smaller graph, one uses the normalized
optimal assignment kernel

k(G, G′) = koa(G, G′)√
koa(G, G)koa(G′, G′)

. (8.24)

Whether or not koa is positive definite depends on the underlying vertex similarity
kG,G′ [38].

Choices for kG,G′ (v, v′) include the mean similarity between the neighbors of v

and v′ up to a given topological distance, where the influence of distant neighbors is
downweighted [35], optimal assignments of the neighbors [34], and, an equilibrium
definition of vertex similarity based on iterative graph similarity (iterative similarity
optimal assignment kernel, ISOAK) [37].

8.8.2 Computation

Equation 8.23 can be computed in two steps: first, the matrix of pairwise vertex
similarities is calculated. Then, an optimal assignment (one column assigned uniquely
to each row) is computed using the Kuhn–Munkres assignment algorithm (also called
Hungarian algorithm) [83–85]) in time O(|V ′|3).

For graphs with bounded vertex degree, the matrix of pairwise vertex similari-
ties can be computed in time O(|V ′|2) if mean similarity or optimal assignments of
neighbors are used. The ISOAK iterative graph similarity approach requires time
in O

(|V ′|3 + |V ′|2 logα((1 − α)ε)
)
, where ε is the desired precision and α ∈ (0, 1)

controls the extent of neighbor influence.

8.8.3 Variants and Extensions

Optimal assignment kernels are not always positive definite7 [38] because positive
definite functions are not closed under the max operation [86]. Vishwanathan et al. [64]
sketch a potential remedy to this problem based on an approximation of the tropical
semiring via the logarithmic semiring augmented with a temperature parameter. The
basic idea is to remove the max in Equation 8.23 and to exponentiate the summed
terms; the result will be dominated by the value of the optimal assignment.

Optimal assignment kernels have also been combined with frequent subgraph
mining [48].

7Note that the ISOAK graph kernel has been shown empirically to be positive definite on many data sets
of molecular structure graphs for α → 1 [37,41].

www.it-ebooks.info

http://www.it-ebooks.info/

232 GRAPH KERNELS

8.9 OTHER GRAPH KERNELS

Several other approaches to graph kernels have been proposed.
Neighborhood hash kernels [57] use binary representations of discrete vertex la-

bels. In consecutive rounds, the labels of the neighbors of each vertex and the vertex
itself are combined using hash functions based on the exclusive-or and left-shift op-
erations. This has the effect of propagating information about neighborhood structure
throughout the graph. The hashed labels generated in each round are used to calculate
a kernel function based on the Jaccard–Tanimoto coefficient. The procedure takes
time in O(DR c̄ |V |), where D is the bit length of the used binary representations, R

is the number of rounds, and c̄ is the average vertex degree, making it an essentially
linear algorithm applicable to graphs with several thousand vertices.

The edit distance d(G, G′) [87,88] is the minimum number of vertex and edge
insertions, deletions, and substitutions required to transform G into G′ or vice versa. It
requires computation time exponential in the number of vertices, but can be efficiently
approximated [89]. The kernel

kG0 (G, G′) = 1

2

(
d2(G, G0) + d2(G′, G0) − d2(G, G′)

)
, (8.25)

where G0 is fixed and takes the role of origin, is positive definite if −d2 is conditionally
positive definite [14]. An advantage of edit distances is their robustness against noise
in the input graphs.

Complement graph kernels k(G, G′) + k(Ḡ, Ḡ′) are random walk kernels k that use
both the graph G = (V, E) itself and its complement graph Ḡ = (

V, V × V \ E
)

[49].
Through this, they also take the absence of an edge in both graphs into account. This
is relevant, for example, for the comparison of protein–protein interaction networks.

Other kernels include fingerprint kernels [42,43] which extract fingerprints from
graphs, for example, based on common walks of length up to d, matching-based
kernels [46] which decompose graphs into walks of fixed length, compared using set
distances and the proximity space representation, convolution kernels augmented by
the context of a substructure [45], and kernels based on spatial alignments, vertex
matching, and the Jaccard index [90]. The latter are not positive definite.

8.10 APPLICATIONS IN BIO- AND CHEMINFORMATICS

Graph kernels constitute an alternative to vector-based representations of molecules
(descriptors) in cheminformatics applications such as ligand-based virtual screening
[91] and quantitative structure–property relationships [92]. In bioinformatics, strings
as a natural representation of base pair sequences have played a more prominent
role from the beginning, but graphs have gained momentum recently, mainly due to
advances in systems biology, for example, protein–protein interaction networks.

Although molecular graphs have been used as examples early on, the application
of graph kernels in bio- and cheminformatics is still in its beginnings. Until now, a

www.it-ebooks.info

http://www.it-ebooks.info/

SUMMARY AND CONCLUSIONS 233

TABLE 8.2 Selected References by Study Type

Study Type References

Reviews [1,64,66,94–97]
Theoretical studies [23,38,58,62,98,99]
Retrospective studies [27–29,31–37,39,40,42–46,48,49,51–57,67,90,100–103]
Prospective studies [41,93]

TABLE 8.3 Selected References by Topic

Topic References

Absorption, bioavailability [34–36,48]
Blood–brain barrier [34,36,37,41]
Drug / nondrug [37,41]
Methodology [1,23,38,58,62,64,66,95–99]
Lead hopping [54]
Mutagenicity, carcinogenicity [28–30,42,42,43,45,46,48,51–57,67]
Protein binding [31,32,36,37,39–41,44,45,47,48,54,90,93,102]
Protein function [27,33,44,51–53,56,100]
Protein interactions [49,101,103]
Protein structure [57]
Protein transport [44]
Toxicology [28–30,34,35,37,41,42,44,47,52,55,57]

good two dozen retrospective studies (Table 8.2) have been done, covering a moderate
range of topics in bio- and cheminformatics (Table 8.3), including the establishment
of quantitative structure–activity and structure–property relationships, estimation of
absorption, distribution, metabolism, excretion, and toxicity of compounds, and, pre-
diction of protein function. A common theme of most of these studies is that ap-
proaches based on graph kernels were either able to achieve state-of-the-art results
or surpass them. Unfortunately, the use of different retrospective validation schemes,
together with problematic aspects in their design and execution, make an objective
comparison of retrospective results in the literature almost impossible.

While retrospective studies paint a promising picture, there are almost no prospec-
tive applications yet. In a recent prospective study [93] in drug development, graph
kernels were used together with vector-based descriptors and Gaussian process re-
gression to discover new agonists of the peroxisome proliferator–activated receptor.

Tables 8.2 and 8.3 give an overview of published work.

8.11 SUMMARY AND CONCLUSIONS

Graph kernels allow the utilization of graph theory in a formal framework suitable
for kernel-based machine learning. They have the advantage that they can potentially

www.it-ebooks.info

http://www.it-ebooks.info/

234 GRAPH KERNELS

exploit information not available to vector-based representations alone. In many ap-
plication domains, graphs are a natural representation of input data, for example, the
molecular structure graph in cheminformatics. On the downside, most graph kernels
are computationally demanding, with cubic or higher degree runtimes. This prevents
them from being used with large graphs. They are not always interpretable, although
this depends highly on the kernel.

What makes a good graph kernel? Borgwardt and Kriegel [33] have argued that
a graph kernel “should be (i) a good measure of graph similarity, (ii) computable
in polynomial time, (iii) positive definite, and (iv) applicable to all graphs, not just
a small subset of graphs.” While (i), (ii), (iii) are reasonable requirements, with (i)
being somewhat vague, I disagree with (iv). From basic considerations (Section 8.1.3),
a graph kernel is a trade-off between completeness (expressivity) and complexity
(runtime). A kernel that exploits characteristics of specific graph classes (e.g., graphs
with bounded vertex degrees, such as molecular structure graphs) can take advantage
of these characteristics to achieve a better trade-off on this graph class. Restriction to
a specific graph class is a way to introduce domain knowledge; it is also related to
the principle stated by Vapnik [104] that “when solving a problem of interest, do not
solve a more general problem as an intermediate step.”

Many graph kernels count particular types of subgraphs (the features), such as
walks, paths, trees, cyclic patterns, or fixed-size subgraphs. Only counting subgraphs
ignores their relative position in the graph, information that can be crucial in some
application domains.

Some graph kernels, for example, random walk kernels and substructure-based
kernels, rely on comparing all possible subgraphs, for example, all random walks,
or all subtrees of a certain type. It has been argued [46] that this might negatively
affect performance due to the combinatorial growth of the number of such subgraphs,
most of which will not be related with the target property. Proposed solutions include
downweighting of the contribution of larger subgraphs, prior knowledge-based se-
lection of relevant subgraphs, or, considering contextual information for limited-size
subgraphs [45].

Graph kernels often use other kernels to compare vertex or edge labels, such as the
Dirac kernel (also Kronecker kernel, k(x, x′) = 1 if x = x′, and 0 otherwise). This
simple approach works surprisingly well, but might reduce expressivity, and more
sophisticated label comparisons might prove beneficial, depending on the application.

Certain graph kernels support only edge labels. An edge kernel ke : E × E′ → R

can be extended to include information from a vertex kernel kv : V × V ′ → R via

k̃e

(
(vi, vj), (v′

i′ , v
′
j′)

) = kv(vi, v
′
i′)ke

(
(vi, vj), (v′

i′ , v
′
j′)

)
kv(vj, v

′
j′). (8.26)

Many theoretical properties of graph kernels have not been sufficiently investi-
gated, for example, completeness (Section 8.1.3). It has been shown [58] that even
approximating a complete graph kernel is NP-hard. This result, however, is for gen-
eral graphs; it is not clear whether it holds for specialized graph classes. The related
graph isomorphism problem, for example, is in P for bounded degree graphs [105].

www.it-ebooks.info

http://www.it-ebooks.info/

T
A

B
L

E
8.

4
Im

pl
em

en
ta

ti
on

s
of

G
ra

ph
K

er
ne

ls

K
er

ne
l

Ty
pe

L
an

gu
ag

e
L

ic
en

se
A

va
ila

bi
lit

y
R

ef
er

en
ce

s

IS
O

A
K

O
A

Ja
va

B
SD

m
r

u
p

p
.

i
n

f
o

[3
7]

O
pt

im
al

as
si

gn
m

en
t

O
A

Ja
va

N
on

e
d

k
f

z
.

d
e

/
m

g
a

2
/

p
e

o
p

l
e

/
f

r
o

e
h

l
i

c
h

a
[3

4]
M

ar
gi

na
liz

ed
R

W
M

at
la

b
N

on
e

k
y

b
.

t
u

e
b

i
n

g
e

n
.

m
p

g
.

d
e

/
b

s
/

p
e

o
p

l
e

/
s

p
i

d
e

r
b

[2
8]

M
ar

gi
na

liz
ed

R
W

C
+

+
L

G
PL

c
h

e
m

c
p

p
.

s
o

u
r

c
e

f
o

r
g

e
.

n
e

t
[2

8,
30

]
G

eo
m

et
ri

c
R

W
C

+
+

L
G

PL
c

h
e

m
c

p
p

.
s

o
u

r
c

e
f

o
r

g
e

.
n

e
t

[5
8]

T
re

e
pa

tte
rn

T
P

C
+

+
L

G
PL

c
h

e
m

c
p

p
.

s
o

u
r

c
e

f
o

r
g

e
.

n
e

t
[5

5]
A

ll-
pa

th
s

P
Py

th
on

G
PL

m
a

r
s

.
c

s
.

u
t

u
.

f
i

/
P

P
I

C
o

r
p

o
r

a
[1

01
]

Pa
ge

ra
nk

O
Ja

va
L

G
PL

w
w

w
.

c
s

.
i

a
s

t
a

t
e

.
e

d
u

/
∼f

t
o

w
f

i
c

→
B

iN
A

[1
03

]
Sh

or
te

st
pa

th
s

P
Ja

va
L

G
PL

w
w

w
.

c
s

.
i

a
s

t
a

t
e

.
e

d
u

/
∼f

t
o

w
f

i
c

→
B

iN
A

[1
03

]
R

an
do

m
w

al
k

R
W

Ja
va

L
G

PL
w

w
w

.
c

s
.

i
a

s
t

a
t

e
.

e
d

u
/
∼f

t
o

w
f

i
c

→
B

iN
A

[1
03

]

a
A

ls
o

av
ai

la
bl

e
at

w
w

w
.

r
a

.
c

s
.

u
n

i
-

t
u

e
b

i
n

g
e

n
.

d
e

/
s

o
f

t
w

a
r

e
/

0
A

K
e

r
n

e
l

s
/

.C
on

ta
in

s
a

Ja
va

im
pl

em
en

ta
tio

n
of

th
e

m
ar

gi
na

liz
ed

gr
ap

h
ke

rn
el

.
b
Fi

le
s

b
a

s
i

c
/

@
k

e
r

n
e

l
/

k
m

g
r

a
p

h
.

m
an

d
b

a
s

i
c

/
@

k
e

r
n

e
l

/
k

m
g

r
a

p
h

c
l

a
s

s
i

c
a

l
.

m
.

T
he

lis
ti

s
no

tc
om

pr
eh

en
si

ve
.O

A
=

op
tim

al
as

si
gn

m
en

tk
er

ne
l,

R
W

=
ra

nd
om

w
al

k
ke

rn
el

,T
P

=
tr

ee
pa

tte
rn

ke
rn

el
,P

=
pa

th
ke

rn
el

,O
=

ot
he

r
ke

rn
el

.

235

www.it-ebooks.info

http://www.it-ebooks.info/

236 GRAPH KERNELS

Graph kernels have some interesting connections to other topics, for example,
random walk kernels are a special case of rational kernels on weighted transducers
[64], and shortest path kernels are a generalization of the Wiener index [1,106].

Further guidance is necessary with regard to the conditions under which it is
advantageous to use a graph kernel, and as to which graph kernel to use. Intuitively,
one should consider graph kernels when there is a natural representation of inputs
as graphs. If several graph kernels match all application requirements such as the
use of vertex or edge labels, one should choose the kernel that most closely matches
the specialized graph class of the application. Besides that, it is suggested to try
different graph kernels, possibly in combination with vector-based representations,
for example, via multiple kernel learning [107].

Table 8.4 lists several available implementations of graph kernels. It is intended
to provide a starting point for scientists who want to apply graph kernels in their
own research. Compared to the available machine learning software (see, e.g.,
www.mloss.org), the number of readily available graph kernel implementations
is rather limited.

Graph kernels constitute a promising and relatively new approach in kernel-based
machine learning and its applications. A growing number of retrospective validation
studies attests to their potential usefulness, often reaching or surpassing state-of-the-
art performance, but application studies are still lacking. In my opinion, research in
the following directions would be most useful to exploit graph kernels further: (i) the
conduction of prospective application studies, (ii) the development of graph kernels
(or the adaptation of existing ones) that take advantage of domain-specific graph
characteristics, such as the bounded vertex degree of molecular structure graphs,
(iii) investigations of theoretical graph kernel properties. In addition, an increase in
available graph kernel implementations would be of great practical benefit.

ACKNOWLEDGMENTS

The author acknowledges partial support from European Union FP7-ICT programme
(PASCAL2), Deutsche Forschungsgemeinschaft (DFG grant MU 987/4-2), and Insti-
tute for Pure and Applied Mathematics (IPAM, UCLA, long program on “navigating
chemical compound space for materials and bio design”).

REFERENCES

1. K. Borgwardt, Graph Kernels, PhD thesis, Faculty for Mathematics, Informatics and
Statistics, Ludwig-Maximilians-University Munich, Germany, 2007.

2. D. Bonchev, D. Rouvray, Chemical Graph Theory. Introduction and Fundamentals,
Taylor & Francis, London, 1991.

3. J. Gasteiger, T. Engel, Chemoinformatics, Wiley-VCH, Weinheim, 2003.

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 237

4. R. Sharan, T. Ideker, Modeling cellular machinery through biological network compari-
son. Nat. Biotechnol. 24(4), 427–433 (2006).

5. S. Wasserman, K. Faust, Social network analysis, in Structural Analysis in the Social
Sciences, Vol. 8, Cambridge University Press, 1995.

6. R. Kumar, J. Novak, A. Tomkins, Structure and evolution of online social networks, in
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD 2006), Philadelphia, USA, August 20–23, pp. 611–617,
2006.

7. Z. Harchaoui, F. Bach, Image classification with segmentation graph kernels, in Pro-
ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2007), Minneapolis, Minnesota, USA, June 18–23, IEEE Computer
Society, 2007.

8. M. Collins, N. Duffy, Convolution kernels for natural language, in (T. Dietterich,
S. Becker, Z. Ghahramani, eds.), Advances in Neural Information Processing Systems 14
(NIPS 2001), Vancouver, British Columbia, Canada, December 8–3, MIT Press, pp. 625–
632, 2002.

9. F. Emmert-Streib, M. Dehmer, Networks for systems biology: conceptual connection of
data and function, IET Syst. Biol. 5(3), 185–207 (2011).

10. R.C. Read, D.G. Corneil, The graph isomorphism disease. J. Graph Theor. 1(4), 339–363
(1977).

11. J.R. Ullman, An algorithm for subgraph isomorphism. J. Assoc. Comput. Mach. 23(1),
31–42 (1976).

12. B. Zelinka, On a certain distance between isomorphism classes of graphs. Časopis pro
Pěstování Matematiky 100(4), 371–373 (1975).

13. M.-L. Fernández, Gabriel Valiente, A graph distance metric combining maximum
common subgraph and minimum common supergraph. Pattern Recogn. Lett. 22(6–7)
(2001).

14. M. Neuhaus, H. Bunke, Edit distance-based kernel functions for structural pattern clas-
sification. Pattern Recogn. 39(10), 1852–1863 (2006).

15. L.G. Shapiro, Organization of relational models, in Proceedings of the 6th International
Conference on Pattern Recognition (ICPR 1982), Munich, Germany, October 19–22,
pp. 360–365, 1982.

16. D. Gernert, Measuring the similarity of complex structures by means of graph grammars,
Bull. Eur. Assoc. Theor. Comput. Sci. 7, 3–9 (1979).

17. T. Hofmann, B. Schölkopf, A. Smola, A review of kernel methods in machine learning,
Technical Report 156, Max-Planck-Institute for Biological Cybernetics, 2006.

18. K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, B. Schölkopf, An introduction to kernel-
based learning algorithms. IEEE Trans. Neural Netw. 12(2), 181–201 (2001).

19. B. Schölkopf, A. Smola, Learning with Kernels, MIT Press, Cambridge, 2002.

20. J. Shawe-Taylor, Nello Cristianini, Kernel Methods for Pattern Analysis, Cambridge
University Press, New York, 1st edn., 2004.

21. R. Kondor, J. Lafferty, Diffusion kernels on graphs and other discrete structures, in (C.
Sammut, A. Hoffmann, eds.), Proceedings of the 19th International Conference on Ma-
chine Learning (ICML 2002), Sydney, Australia, July 8–12, Morgan Kaufmann, pp. 315–
322, 2002.

www.it-ebooks.info

http://www.it-ebooks.info/

238 GRAPH KERNELS

22. R. Kondor, J.-P. Vert, Diffusion kernels, in (B. Schölkopf, K. Tsuda, J.-P. Vert, eds.),
Kernel Methods in Computational Biology, MIT Press, Cambridge, pp. 171–191, 2004.

23. A. Smola, R. Kondor, Kernels and regularization on graphs, in (B. Schölkopf, M. War-
muth, eds.), Learning Theory and Kernel Machines: Proceedings of the 16th Annual
Conference on Learning Theory and 7th Kernel Workshop (COLT / Kernel 2003), Wash-
ington DC, USA, August 24–27, Vol. 2777, Lecture Notes in Computer Science, Springer,
pp. 144–158, 2003.

24. J. Kandola, J. Shawe-Taylor, N. Cristianini, Learning semantic similarity, in (S. Becker,
S. Thrun, K. Obermayer, eds.), Advances in Neural Information Processing Systems 15
(NIPS 2002), Cambridge, Massachusetts, USA, December 10–12, MIT Press, pp. 657–
664, 2003.

25. T. Jaakkola, M. Diekhans, D. Haussler, A discriminative framework for detecting remote
protein homologies. J. Comput. Bio. 7(1–2), 95–114 (2000).

26. K. Tsuda, M. Kawanabe, G. Rätsch, S. Sonnenburg, K.-R. Müller, A new discriminative
kernel from probabilistic models. Neural Comput. 14(10), 2397–2414 (2002).

27. K. Tsuda, T. Kin, K. Asai, Marginalized kernels for biological sequences. Bioinformatics
18(7), S268–S275 (2002).

28. H. Kashima, K. Tsuda, A. Inokuchi, Kernels for graphs, in (B. Schölkopf, K. Tsuda,
J.-P. Vert, eds.), Kernel Methods in Computational Biology, MIT Press, Cambridge,
pp. 155–170, 2004.

29. H. Kashima, K. Tsuda, A. Inokuchi, Marginalized kernels between labeled graphs, in
(T. Fawcett, N. Mishra, eds.), Proceedings of the 20th International Conference on
Machine Learning (ICML 2003), Washington DC, USA, August 21–24, Menlo Park,
CA, AAAI Press, pp. 321–328, 2003.

30. P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, J.-P. Vert, Extensions of marginalized graph
kernels, in (C. Brodley, ed.), Proceedings of the 21st International Conference on Machine
Learning (ICML 2004), Banff, Alberta, Canada, July 4–8, Omnipress, Madison, WI, USA,
pp. 552–559, 2004.

31. T. Horváth, T. Gärtner, S. Wrobel, Cyclic pattern kernels for predictive graph mining,
in (R. Kohavi, J. Gehrke, W. DuMouchel, J. Ghosh, eds.), Proceedings of the 10th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD 2004), Seattle, Washington, USA, August 22–25, ACM Press, pp. 158–167, 2004.

32. T. Horváth, Cyclic pattern kernels revisited, in (J. Carbonell, J. Siekmann, eds.), Pro-
ceedings of the 9th Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD 2005), Hanoi, Vietnam, May 18–20, Vol. 3518, Lecture Notes in Computer
Science, Springer, pp. 791–801, 2005.

33. K. Borgwardt, H.-P. Kriegel, Shortest-path kernels on graphs, in Proceedings of the 5th
IEEE International Conference on Data Mining (ICDM 2005), Houston, Texas, USA,
November 27–30, IEEE Computer Society, pp. 74–81, 2005.

34. H. Fröhlich, J. Wegner, F. Sieker, A. Zell, Optimal assignment kernels for attributed
molecular graphs, in (L. de Raedt, S. Wrobel, eds.), Proceedings of the 22nd International
Conference on Machine Learning (ICML 2005), Bonn, Germany, August 7–11, Madison,
WI, USA, pp. 225–232, Omnipress, 2005.

35. H. Fröhlich, J. Wegner, A. Zell, Assignment kernels for chemical compounds, in Pro-
ceedings of the 2005 International Joint Conference on Neural Networks (IJCNN 2005),
Montréal, Canada, July 31–August 4, IEEE Computer Society, pp. 913–918, 2005.

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 239

36. H. Fröhlich, J. Wegner, F. Sieker, A. Zell, Kernel functions for attributed molecular graphs:
a new similarity-based approach to ADME prediction in classification and regression,
QSAR Comb. Sci. 25(4), 317–326 (2006).

37. M. Rupp, E. Proschak, G. Schneider, Kernel approach to molecular similarity based on
iterative graph similarity. J. Chem. Inform. Model. 47(6), 2280–2286 (2007).

38. J.-P. Vert, The optimal assignment kernel is not positive definite, Technical Report
HAL-00218278, Centre for Computational Biology, Mines ParisTech, Paris, France,
2008.

39. N. Fechner, A. Jahn, G. Hinselmann, A. Zell, Atomic local neighborhood flexibility
incorporation into a structured similarity measure for QSAR, J. Chem. Inform. Model.
49(3), 549–560 (2009).

40. A. Jahn, G. Hinselmann, N. Fechner, A. Zell, Optimal assignment methods for ligand-
based virtual screening, J. Cheminform. 1(14) (2009).

41. M. Rupp, Kernel Methods for Virtual Screening, PhD thesis, Johann Wolfgang Goethe-
University, Frankfurt am Main, Germany, 2009.

42. L. Ralaivola, S. Swamidass, H. Saigo, P. Baldi, Graph kernels for chemical informatics.
Neural Netw. 18(8), 1093–1110 (2005).

43. J. Swamidass, J. Chen, J. Bruand, P. Phung, L. Ralaivola, P. Baldi, Kernels for small
molecules and the prediction of mutagenicity, toxicity and anti-cancer activity. Bioinfor-
matics 21(Suppl. 1), i359–i368 (2005).

44. S. Menchetti, F. Costa, P. Frasconi, Weighted decomposition kernels, in (L. de Raedt,
S. Wrobel, eds.), Proceedings of the 22nd International Conference on Machine Learning
(ICML 2005), Bonn, Germany, August 7–11, Omnipress, Madison, WI, USA, pp. 585–
592, 2005.

45. A. Ceroni, F. Costa, P. Frasconi, Classification of small molecules by two- and three-
dimensional decomposition kernels. Bioinformatics 23(16), 2038–2045 (2007).

46. A. Woźnica, A. Kalousis, M. Hilario, Matching based kernels for labeled graphs, in
(T. Gärtner, G. Garriga Thorsten Meinl, eds.), Proceedings of the International Workshop
on Mining and Learning with Graphs (MLG 2006), Berlin, Germany, September 18,
pp. 97–108, 2006.

47. A. Smalter, J. Huan, G. Lushington, GPM: a graph pattern matching kernel with dif-
fusion for chemical compound classification, in Proceedings of the 8th IEEE Interna-
tional Conference on Bioinformatics and Bioengineering (BIBE 2008), Athens, Greece,
October 8–10, IEEE Computer Society, 2008.

48. A. Smalter, J. Huan, G. Lushington, Chemical compound classification with automatically
mined structure patterns, in (A. Brazma, S. Miyano, T. Akutsu, eds.), Proceedings of the
6th Asia-Pacific Bioinformatics Conference (APBC 2008), Kyoto, Japan, January 14–17,
Imperial College Press, pp. 39–48, 2008.

49. K. Borgwardt, H.-P. Kriegel, V. Vishwanathan, N. Schraudolph, Graph kernels for
disease outcome prediction from protein–protein interaction networks, in (R. Altman,
K. Dunker, L. Hunter, T. Murray, T. Klein, eds.), Proceedings of the 12th Pacific Sym-
posium on Biocomputing (PSB 2007), Maui, Hawaii, USA, January 3–7, pp. 4–15,
2007.

50. F.R. Bach, Graph kernels between point clouds, in (A. McCallum, S. Roweis, eds.),
Proceedings of the 25th International Conference on Machine Learning (ICML 2008),
Helsinki, Finland, July 5–9, Omnipress, pp. 25–32, 2008.

www.it-ebooks.info

http://www.it-ebooks.info/

240 GRAPH KERNELS

51. R. Kondor, K.M. Borgwardt, The skew spectrum of graphs, in (A. McCallum, S.
Roweis, eds.), Proceedings of the 25th International Conference on Machine Learning
(ICML 2008), Helsinki, Finland, July 5–9, Omnipress, pp. 496–503, 2008.

52. N. Shervashidze, V. Vishwanathan, T. Petri, K. Mehlhorn, K. Borgwardt, Efficient graphlet
kernels for large graph comparison, in (D. van Dyk, M. Welling, eds.), Proceedings of
the 12th International Workshop on Artificial Intelligence and Statistics (AISTATS 2009),
Clearwater Beach, Florida, USA, April 16–18, pp. 488–495, 2009.

53. R. Kondor, N. Shervashidze, K.M. Borgwardt, The graphlet spectrum, in (L. Bottou, M.
Littman, eds.), Proceedings of the 26th International Conference on Machine Learn-
ing (ICML 2009), Montreal, Quebec, Canada, June 14–18, Omnipress, pp. 529–536,
2009.

54. A. Demco, Graph Kernel Extensions and Experiments with Application to Molecule
Classification, Lead Hopping and Multiple Targets. PhD thesis, School of Electronics
and Computer Science, University of Southampton, England, 2009.

55. P. Mahé, J.-P. Vert, Graph kernels based on tree patterns for molecules. Mach. Learn.
75(1), 3–35 (2009).

56. N. Shervashidze, K. Borgwardt, Fast subtree kernels on graphs, in (Y. Bengio,
D. Schuurmans, J. Lafferty, C. Williams, A. Culotta, eds.), Advances in Neural
Information Processing Systems 22 (NIPS 2009), Vancouver, Canada, December 7–12,
MIT Press, pp. 1660–1668, 2009.

57. S. Hido, H. Kashima, A linear-time graph kernel, in Proceedings of the 9th IEEE Interna-
tional Conference on Data Mining (ICDM 2009), Miami, Florida, USA, December 6–9,
IEEE Computer Society, 2009.

58. T. Gärtner, P. Flach, S. Wrobel, On graph kernels: hardness results and efficient alter-
natives, in Learning Theory and Kernel Machines (B. Schölkopf, M. Warmuth, eds.),
Proceedings of the 16th Annual Conference on Learning Theory and 7th Kernel Work-
shop (COLT / Kernel 2003), Washington DC, USA, August 24–27, Vol. 2777, Lecture
Notes in Computer Science, Springer, pp. 129–143, 2003.

59. D. Johnson, The NP-completeness column: an ongoing guide. J. Algorithms 2(4), 393–
405 (1981).

60. D. Johnson, The NP-completeness column. ACM Trans. Algorithms 1(1), 160–176
(2005).

61. D. Johnson, The NP-completeness column: an ongoing guide. J. Algorithms 5(1), 147–
160 (1984).

62. D. Haussler, Convolution kernels on discrete structures, Technical Report UCSC-
CRL-99-10, Department of Computer Science, University of California at Santa Cruz,
California, USA, 1999.

63. C. Watkins, Dynamic alignment kernels, Technical Report CSD-TR-98-11, Royal
Holloway, London, England, 1999.

64. V. Vishwanathan, N. Schraudolph, R. Kondor, K. Borgwardt, Graph kernels. J. Mach.
Learn. Res. 11(4), 1201–1242 (2010).

65. T. Gärtner, Exponential and geometric kernels for graphs, in Neural Information Pro-
cessing Systems (NIPS) Workshop on Unreal Data: Principles of Modeling Nonvectorial
Data, 2002.

66. T. Gärtner, A survey of kernels for structured data. ACM SIG Knowledge Discov. Data
Mining Explorations Newsletter 5(1), 49–58 (2003).

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 241

67. P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, J.-P. Vert, Graph kernels for molecular structure–
activity relationship analysis with support vector machines. J. Chem. Inform. Model.
45(4), 939–951 (2005).

68. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 3rd edn.,
MIT Press, Cambridge, 2009.

69. J.Y. Yen, Finding the k shortest loopless paths in a network. Manag. Sci. 17(11), 712–716
(1971).

70. E.L. Lawler, A procedure for computing the k best solutions to discrete optimization
problems and its application to the shortest path problem. Manag. Sci. 18(7), 401–405
(1972).

71. B. Weisfeiler, A.A. Lehman, A reduction of a graph to a canonical form and an algebra
arising during this reduction. Nauch.-Techn. Inform. 2(9), 12–16 (1968).

72. M. Zaki, Efficiently mining frequent trees in a forest: algorithms and applications. IEEE
Trans. Knowledge Data Eng. 17(8), 1021–1035 (2005).

73. J. Flum, M. Grohe, The parameterized complexity of counting problems. SIAM J. Comput.
33(4), 892–922 (2004).

74. H. Bodlaender, A tourist guide through treewidth. Acta Cybernetica 11(1–2), 1–21
(1993).

75. M. Plotkin, Mathematical basis of of ring-finding algorithms in CIDS. J. Chem. Doc.
11(1), 60–63 (1971).

76. P. Gleiss, P. Stadler, Relevant cycles in biopolymers and random graphs, in Proceedings of
the 4th Slovene International Conference in Graph Theory, Lake Bled, Slovenia, June 28–
July 2, 1999.

77. B.D. McKay, Small graphs are reconstructible. Austral. J. Combin. 15, 123–126 (1997).

78. B. Bollobás, Almost every graph has reconstruction number three. J. Graph Theor. 14(1),
1–4 (1990).

79. R. Kakarala, A group-theoretic approach to the triple correlation, in Proceedings of the
IEEE Signal Processing Workshop on Higher-Order Statistics (SPW-HOS 1993), South
Lake Tahoe, California, USA, June 7–9, IEEE, pp. 28–32, 1993.

80. N. Weskamp, E. Hüllermeier, D. Kuhn, G. Klebe, Graph alignments: a new concept to
detect conserved regions in protein active sites, in (R. Giegerich, J. Stoye, eds.), Pro-
ceedings of the German Conference on Bioinformatics (GCB 2004), Bielefeld, Germany,
October 4–6, Gesellschaft für Informatik, pp. 131–140, 2004.

81. J. Berg, M. Lässig, Local graph alignment and motif search in biological networks. Proc.
Natl. Acad. Sci. U.S.A. 101(41), 14689–14694 (2004).

82. M. Dehmer, F. Emmert-Streib, J. Kilian, A similarity measure for graphs with low com-
putational complexity. Appl. Math. Comput. 182(1), 447–459 (2006).

83. H. Kuhn, The Hungarian method for the assignment problem, Bull. Am. Math. Soc. 61,
557–558 (1955).

84. J. Munkres, Algorithms for the assignment and transportation problems. J. Soc. Indus.
Appl. Math. 5(1), 32–38 (1957).

85. F. Bourgeois, J.-C. Lassalle, An extension of the Munkres algorithm for the assignment
problem to rectangular matrices. Commun. ACM 14(12), 802–804 (1971).

86. C. Berg, J. Christensen, P. Ressel, Harmonic Analysis on Semigroups: Theory of Positive
Definite and Related Functions, Springer, 1984.

www.it-ebooks.info

http://www.it-ebooks.info/

242 GRAPH KERNELS

87. V. Levenshtein, Binary codes capable of correcting deletions, insertions, and reversals.
Sov. Phys. Doklady 10(8), 707–710 (1966).

88. D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology, Cambridge University Press, Cambridge, 1997.

89. M. Neuhaus, H. Bunke, An error-tolerant approximate matching algorithm for attributed
planar graphs and its application to fingerprint classification, in (A. Fred, T. Caelli,
R. Duin, A. Campilho, D. de Ridder, eds.), Proceedings of the 10th Joint IAPR In-
ternational Workshops on Structural, Syntactic, and Statistical Pattern Recognition
(SSPR 2004, SPR 2004), Lisbon, Portugal, August 18–20, Vol. 3138, Lecture Notes in
Computer Science, Springer, pp. 180–189, 2004.

90. J. Mohr, B. Jain, K. Obermayer, Molecule kernels: a descriptor- and alignment-free quanti-
tative structure–activity relationship approach. J. Chem. Inform. Model. 48(9), 1868–1881
(2008).

91. D. Douguet, Ligand-based approaches in virtual screening. Curr. Comput.-Aided Drug
Design 4(3), 180–190 (2008).

92. C. Selassie, History of quantitative structure–activity relationships, in (D. Abrahams, ed.),
Burger’s Medicinal Chemistry and Drug Discovery, Wiley, Vol. 1, Chapter 1, pp. 1–48,
6th edn., 2003.

93. M. Rupp, T. Schroeter, R. Steri, H. Zettl, E. Proschak, K. Hansen, O. Rau, O. Schwarz,
L. Müller-Kuhrt, M. Schubert-Zsilavecz, K.-R. Müller, G. Schneider, From machine
learning to natural product derivatives selectively activating transcription factor PPARγ .
ChemMedChem 5(2), 191–194 (2010).

94. T. Gärtner, Q.Viet Le, A. Smola, A short tour of kernel methods for graphs, Technical
Report, 2006.

95. T. Gärtner, T. Horváth, Q.Viet Le, A. Smola, S. Wrobel, Kernel methods for graphs, in
Mining Graph Data (D. Cook, L. Holder, eds.), Wiley, pp. 253–282, 2007.

96. P. Mahé, J.-P. Vert, Virtual screening with support vector machines and structure kernels,
Technical Report HAL-00166188, Ecole des Mines de Paris, Center for Computational
Biology, 2007.

97. T. Gärtner, Kernels for Structured Data, Number 72 in Machine Perception and Artificial
Intelligence, World Scientific Publishing, 2009.

98. J. Ramon, T. Gärtner, Expressivity versus efficiency of graph kernels, in (L. de Raedt, T.
Washio, eds.), Proceedings of the 1st International Workshop on Mining Graphs, Trees
and Sequences (MGTS 2003), Cavtat-Dubrovnik, Croatia, September 22–23, pp. 65–74,
2003.

99. V. Vishwanathan, K. Borgwardt, N. Schraudolph, Fast computation of graph kernels, in
(B. Schölkopf, J. Platt, T. Hofmann, eds.), Advances in Neural Information Processing
Systems 19 (NIPS 2006), Vancouver, Canada, December 4–7, MIT Press, pp. 1449–1456,
2006.

100. K. Borgwardt, C.S. Ong, S. Schönauer, V. Vishwanathan, A. Smola, H.-P. Kriegel, Pro-
tein function prediction via graph kernels, in (H.V. Jagadish, D. States, B. Rost, eds.),
Proceedings of the 13th International Conference on Intelligent Systems for Molecu-
lar Biology (ISMB 2005), Detroit, USA, June 25–29, Vol. 21 (Suppl. 1) Bioinformatics,
Oxford, pp. i47–i56, 2005.

101. A. Airola, S. Pyysalo, J. Björne, T. Pahikkala, F. Ginter, T. Salakoski, A graph ker-
nel for protein–protein interaction extraction, in (D. Demner-Fushman, S. Ananiadou,

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 243

B. Cohen, J. Pestian, J. Tsujii, B. Webber, eds.), Proceedings of the ACL-08 / HLT Work-
shop on Current Trends in Biomedical Natural Language Processing (BioNLP 2008),
Columbus, Ohio, USA, June 19, Association for Computational Linguistics, pp. 1–9,
2008.

102. T. Fober, M. Mernberger, V. Melnikov, R. Moritz, E. Hüllermeier, Extension and empirical
comparison of graph-kernels for the analysis of protein active sites, in (M. Hartmann, F.
Janssen, eds.), Joint Workshop on Lernen, Wissen, Adaptivität (LWA 2009), Darmstadt,
Germany, September 21–23, Technical University of Darmstadt, pp. 30–36, 2009.

103. F. Towfic, M. Heather West Greenlee, V. Honavar, Aligning biomolecular networks
using modular graph kernels, in S.L. Salzberg, T. Warnow, eds.), Proceedings of the
9th International Workshop on Algorithms in Bioinformatics (WABI 2009), Philadel-
phia, Pennsylvania, USA, September 12–13, Vol. 5724, Lecture Notes in Bioinformatics,
pp. 345–361, 2009.

104. V. Vapnik, The Nature of Statistical Learning Theory, 1st edn., Springer, New York, 1995.

105. E. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial time. J.
Comput. Syst. Sci. 25(1), 42–65 (1982).

106. H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69(1),
17–20 (1947).

107. S. Sonnenburg, G. Rätsch, C. Schäfer, B. Schölkopf, Large scale multiple kernel learning.
J. Mach. Learn. Res. 7(7), 1531–1565 (2006).

www.it-ebooks.info

http://www.it-ebooks.info/

9
NETWORK-BASED INFORMATION
SYNERGY ANALYSIS FOR
ALZHEIMER DISEASE

Xuewei Wang, Hirosha Geekiyanage, and Christina Chan

9.1 INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized
by amyloid beta plaques and neurofibrillary tangles. It is not only the principal cause
of dementia in the United States but also one of the fastest growing diseases in the
developed countries [1]. Currently, there are over 4 million Americans diagnosed with
AD and the number is estimated to double during the next 25 years [1]. In an AD
brain, the cortex shrivels damaging the areas of cognition, planning, and memory [2].
Further, the hippocampus of the cortex shrinks hindering formation of new memory.
The molecular mechanisms underlying the pathologies of AD are being uncovered
[3,4]. Thus far, familial AD (<60 years old) which accounts for less than 5% of
AD cases is due to mutations in amyloid precursor protein (APP), presenilin-1 and
presenilin-2, whereas sporadic AD (>65 years old) which accounts for more than 95%
cases of AD, is genetically linked to apolipoprotein E isoform 4. Despite these recent
progresses in the characterization of the pathologies of AD, existing treatments for AD
are far from satisfactory [5]. A more comprehensive understanding of the molecular
mechanisms underlying AD is needed for better identification of molecular targets as
well as development of more effective therapeutics.

In recent years, network-based methods have been widely applied to identify
biomarkers or targets for various diseases [6], typically by integrating gene expres-
sion data and available physical interaction data (i.e., protein–protein interaction).

Statistical and Machine Learning Approaches for Network Analysis, Edited by Matthias Dehmer and
Subhash C. Basak.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

245

www.it-ebooks.info

http://www.it-ebooks.info/

246 NETWORK-BASED INFORMATION SYNERGY ANALYSIS FOR ALZHEIMER DISEASE

Studies have shown that disease genes oftentimes cooperate with each other within
the same biological modules [7], that is, signaling pathways, regulatory modules,
protein complexes, or protein interaction subnetworks, suggesting a strong associa-
tion or interaction between genes/proteins in rendering the disease. Integrating either
physical or functional interaction data into a network has become a powerful tool for
identifying novel genes involved in complex diseases, that is, cerebral ataxias [8],
breast cancer [9], glioblastoma [10], and so on. In the case of AD, protein interaction
data specific to AD have accumulated in the literature [11], generated through high-
throughput experiments [12]. Concomitantly, computational analyses have shown
that the integration of gene expression data with physical and functional interaction
data can be useful in characterizing the pathways and the cross-talk [13,14] or in
prioritizing candidate genes [15–17] involved in AD.

A majority of the existing network-based studies of diseases integrate a global
protein–protein interaction (PPI) network with the gene expression data [18], whereby
the genes in the microarray datasets are mapped to the proteins in the network. Then
differential analysis (i.e., Student’s t-test) and correlation analysis (i.e., Pearson cor-
relation [19] or mutual information [20]) between the genes are applied to identify
disease-specific protein networks, a subset of the global PPI network. For example,
in a recent network-based AD study, only the genes that were differentially expressed
and had high correlations and physical interactions remained in the final network [13].
However, the applications of correlation analysis for identifying a phenotype-specific
PPI network, thus far, have not directly incorporated the phenotype into the analysis.
Instead, typically a network of gene pairs (highly correlated and physically interacting
for each of the conditions) is built and compared to identify the interactions that are
specific to a condition or phenotype. Consequently, these methods become sensitive
to the quality of data. Since the noise level and the size of the samples can affect the
correlation calculation for each of the conditions, it is difficult to determine whether
the differences in the networks across conditions are real changes that provide insight
into the mechanisms or simply an artifact due to the size or noise levels.

Alternatively, some computational approaches have been developed to select sets
of gene pairs relevant to a phenotype based on classification models, such as support
vector machine [21,22], decision tree [23], and probabilistic model [24]. Intuitively,
if a phenotype prediction based on a pair of genes performs better than that based
on either one of the genes then the pair of genes is suggested to have cooperative
effects on the phenotype. However, such classification methods fail to distinguish
the cooperative effects of the genes pairs from the independent contributions of the
individual genes [25]. To address this drawback, we present an information theoretical
method that distinguishes the difference between the cooperative versus individual
effects of the genes.

Molecular machinery in complex diseases usually involves multiple factors, many
of which function cooperatively, that is, synergistically. Indeed, the factors or path-
ways that function synergistically in the development or pathophysiologyy of AD
need to be characterized [26,27]. Some studies have uncovered the genes that work
synergistically to increase the risk of AD progression, that is, APOE4 and BCHE-
K [28], or HO-1 and tau genetic variants [29]. A method that can identify these

www.it-ebooks.info

http://www.it-ebooks.info/

DATASETS AND METHODS 247

synergistic interactions between genes would provide information complementary to
existing approaches (i.e., correlation analysis), and help to enhance our understanding
of the complex mechanisms underlying AD. Computational approaches for system-
atic assessment of synergy were first proposed in neuroscience, where the goal was
to understand the neuron code by evaluating the strength of correlations between the
neurons upon activation by stimuli [30,31]. More recently the concept of information
synergy has been applied to the field of systems biology [32–34]. Investigators devel-
oped an information theoretical measure of synergy from discretized gene expression
data, and applied this measure to identify cooperative gene interactions associated
with neural interconnectivity [32] and prostate cancer development [33]. More re-
cently, the concept of synergy and the information theoretical measure of synergy
have been applied directly to continuous gene expression data [25].

We adopt this concept of information synergy to evaluate the synergistic effects of
two genes on a phenotype (AD in this case). For two genes in a multivariate system,
their synergistic effect on a phenotype is defined as the gain in the “mutual informa-
tion” over the sum of the information provided by each gene on a phenotype. A positive
synergy denotes that two genes regulate a phenotype, either cooperatively (e.g., coac-
tivating) or antagonistically (e.g., competitive inhibiting). Thus, one can predict the
phenotype from either of the two genes at a certain confidence level, whereas knowing
both genes brings additional information, which further enhances the confidence of
the prediction. Negative synergy on the other hand denotes redundancy, thus know-
ing both genes brings redundant information to the prediction. Zero synergy denotes
that at least one of the two genes does not affect the phenotype, and therefore brings
neither additional nor redundant information to the prediction of the phenotype.

In this chapter, we introduce an integrative methodology to build a protein network
based on information synergy analysis that is specific to AD. First, we collected a
publicly available microarray dataset for AD and mapped to a global network col-
lected from experimental PPI databases. Next, we assess the synergistic effects be-
tween the genes that are mapped onto the PPI network. Unlike other computational
methods used to identify gene interactions, the fundamental concept of synergy is to
identify the cooperative gene interactions responsible for the phenotype. Finally, with
the identified synergistic gene pairs, a synergy network is built which is a subset of the
global PPI network. Topological analyses reveal the structural characteristics of the
network while the hub genes provide insights into potential mechanism(s) involved
in the induction of the phenotype. Further, a comparison with differential expression
or differential correlation analyses indicates that the information synergy approach
could provide complementary information to these traditional approaches.

9.2 DATASETS AND METHODS

9.2.1 Microarray Dataset and Protein–Protein Interaction Data

The AD microarray dataset (GSE5281) in GEO database [35] was used for the anal-
ysis, including 13 control samples and 10 AD samples collected from the entorhinal

www.it-ebooks.info

http://www.it-ebooks.info/

248 NETWORK-BASED INFORMATION SYNERGY ANALYSIS FOR ALZHEIMER DISEASE

cortex region in the brains of AD patients with a mean age of 79.8 ± 9.1 years. The
intensities of the probe-sets were first normalized by robust microarray adjustment
(RMA) and logarithmized to base two. The expressions of the multiple probes for the
same genes on the microarray were then averaged. Experimental PPI data was col-
lected from two major protein interaction databases for human, including BioGRID
[36] and HPRD [37]. Duplicate and self-interactions were removed from the analysis.

9.2.2 Calculation of the Synergy Scores of Gene Pairs

An information theory-based score was calculated to quantify the synergy between
the genes [34]. Given two genes, G1 and G2, and a phenotype P, the synergy score
between G1 and G2 with respect to the phenotype P is defined as

Syn(G1, G2; P) = I(G1, G2; P) − [I(G1; P) + I(G2; P)]

where I(G1;P) is the mutual information between G1 and P, I(G2;P) is the mutual
information between G2 and P, and I(G1,G2;P) is the mutual information between
(G1,G2) and P. This equation reflects the definition of synergy, the additional contri-
bution provided by the “whole” as compared to the sum of the contributions of the
individual “parts.” Mutual information (I) was calculated using a clustering-based
method from continuous data [25].

The synergy scores range from −1 to 1. A positive synergy score indicate that two
genes jointly provide additional information on the phenotype, a negative synergy
score indicate that the two genes provide redundant information about the phenotype,
and a zero score indicate that the two genes provide no additional information about
the phenotype.

9.2.3 Permutation Test to Evaluate the Significance of the Synergy

A permutation test was performed to assess the statistical significance of the infor-
mation synergy scores of the gene pairs. The phenotypes, that is, AD versus normal,
were randomly shuffled to be uncorrelated with the gene expression profiles. The
information synergy scores of the genes were then recalculated based on the shuffled
phenotype. This process was repeated 100 times to estimate the distribution of random
information synergy scores based on kernel-density approach, and the p values of the
real information synergy scores were then calculated for each gene pair based on
the distribution of random information synergy score. Finally, Benjamin–Hochberg
false discovery rate procedure [38] was performed to adjust the p values for all the
gene pairs and thereby control the expected false discoveries. The p value cutoff was
set at 0.05.

9.2.4 Characterization of the Network Topology

Structural network theory and the characterization of network topology have con-
tributed to our understanding of the architectures of networks [39]. Structural network

www.it-ebooks.info

http://www.it-ebooks.info/

RESULTS 249

analyses have revealed that existing biological networks, including gene regulatory
networks, metabolic networks, signaling networks, and PPI networks, are very differ-
ent from randomly organized networks. These biological networks have a “scale-free”
feature that is characterized by few hub nodes that contain many connections and many
nodes with very few connections [40]. Further, structural network analysis has con-
tributed to our understanding of the functional organizations in biological systems.
The hub nodes in scale-free networks have been shown to play essential roles in cer-
tain biological systems, for example, the essential proteins (critical for cell viability)
are more significantly over-represented in the hubs than in the nonhub nodes in the
yeast PPI network [41]. In addition to exploring the fundamental principles of bio-
logical networks, structural analyses of human metabolic networks have contributed
insights into disease comorbidity [42].

In our analysis, the synergy network was built with gene pairs that have statistically
significant synergy scores and physical interaction in PPI network. The network com-
posed of nodes that represented the genes, and edges that represented the synergy of
the gene pairs. Topological analysis of the networks obtained from information syn-
ergy, differential expression analysis, and differential correlation, was performed to
reveal their topological characteristics, including the distribution of node degrees and
the distribution of shortest path length. Degree distribution provides a distribution
of the number of edges associated with the nodes. Shortest path length is the lowest
number of edges that connect two nodes, and is measured using a breadth-fast search
algorithm [43].

9.3 RESULTS

9.3.1 Information Synergy for Simulated Gene Pairs

Existing network-based approaches typically incorporate differential analysis or cor-
relation analysis to identify the genes or gene pairs specific to phenotypes or diseases.
In order to illustrate how information synergy analysis differs with differential analysis
and correlation analysis, we simulated scenarios where the genes vary in differential
expression and correlation, and calculated the information synergy for each of the
gene pairs. Six representative scenarios were simulated, including (1) both genes
differentially expressed between phenotypes, and correlated in both phenotypes;
(2) both genes differentially expressed, and have no correlation with each phenotype;
(3) both genes are not differentially expressed, but correlated in both phenotype;
(4) both genes are not differentially expressed, and have no correlation with each
phenotype; (5) both genes are not differentially expressed, but similarly correlated
in each phenotype; (6) both genes are not differentially expressed, but differentially
correlated between phenotypes. The joint expression patterns of these six scenarios
are provided in Figure 9.1, see panels a–f, respectively.

The information synergy scores for each simulated gene pair is also provided in
Figure 9.1. The observations in Figure 9.1 are consistent with the definition of infor-
mation synergy. For example, in panels a and b, each gene is differentially expressed

www.it-ebooks.info

http://www.it-ebooks.info/

250 NETWORK-BASED INFORMATION SYNERGY ANALYSIS FOR ALZHEIMER DISEASE

FIGURE 9.1 Information synergy scores for simulated gene pairs.

and the phenotype could be distinguished by either of the genes (as indicated by dash
lines), thus they provide redundant information on the phenotype, indicating their
information synergy is significantly negative. Each of the genes in panel c and d can-
not individually distinguish the phenotype, and taking them together does not help to
classify the phenotypes, thus the information synergy of each of these two genes is
around zero. In contrast, each of the genes in panel e and f individually is not predic-
tive of the phenotype, but their joint expression pattern can clearly discriminate the
phenotype (i.e., as indicated by dash line in panels e and f). This indicated that
the two genes in panels e or f together provide more information than the sum of
the information provided by the individual genes. Thus, their information synergy
is significantly positive. Therefore, four of these six patterns (pattern a, b, e, and f)
would be of interest in further investigations since the genes in each of these four
patterns are predictive of the phenotypes.

Generally, differential analysis can help to identify the genes with patterns a or b,
and correlation analysis can help to identify the genes with pattern f. However, either
of these two approaches cannot capture the genes with pattern e; in which the genes
are not differentially expressed and the correlation of genes is not altered between
the phenotypes. In contrast, synergy analysis allows one to capture all four patterns,
by accounting for gene pairs with both positive and negative synergies. Note that
there are many other possible joint expression patterns for the genes in term of their

www.it-ebooks.info

http://www.it-ebooks.info/

RESULTS 251

expression and correlation with the phenotypes. Nevertheless, the observations from
these six representative patterns suggested that synergy analysis could be a promising
alternative method in network-based analysis in the pursuing disease biomarkers or
targets. Next, information synergy analysis was applied to identify potential mecha-
nisms underlying AD through integrating gene expression data and protein–protein
interaction network.

9.3.2 Topological Characteristics of Synergy Network for AD

By mapping the gene expression data (from GSE5281 in GEO database) to the PPI
data collected from BioGRID and HPRD, we obtained a global PPI network for AD.
For each connection in this global network, we calculated the information synergy
and evaluated its statistical significance based upon permutation test. Finally, a sub-
network consisting of genes with significant information synergy (either positive or
negative) was obtained (noted as “synergy network” thereafter), which is composed
of 3518 genes with 4819 connection edges (511 with positive and 4308 with negative
information synergy) as shown in Figure 9.2. We characterized the topology of the
synergy network and compared with the global PPI network and the networks derived
from differential expression (herein denoted as DiffExprs network) and differential
correlation (herein denoted as DiffCorr network) analyses. The statistics for each net-
work are listed in Table 9.1. The distribution of the lengths of shortest paths between
nodes and the node degrees are shown in Figure 9.3.

FIGURE 9.2 Synergy network (a) all pairs (3518 genes with 4819 connections); (b) pairs
with positive synergy (780 genes with 511 connections); and (c) pairs with negative synergy
(3083 genes with 4308 connections).

TABLE 9.1 Topological Statistics for Synergy Network, DiffExprs Network, DiffCorr
Network, and Global PPI Network

No. of No. of No. of Characteristic
Network Nodes Connections Components Path Length

Synergy network 3,518 4,819 213 5.70
DiffExprs network 873 1,259 52 5.24
DiffCorr network 1,985 1,744 353 9.40
Global PPI network 10,226 49,621 84 4.02

www.it-ebooks.info

http://www.it-ebooks.info/

F
IG

U
R

E
9.

3
D

is
tr

ib
ut

io
n

of
sh

or
te

st
pa

th
le

ng
th

an
d

no
de

de
gr

ee
fo

r
sy

ne
rg

y
ne

tw
or

k,
D

if
fC

or
r

ne
tw

or
k,

D
if

fE
xp

rs
ne

tw
or

k,
an

d
gl

ob
al

PP
I

ne
tw

or
k.

252

www.it-ebooks.info

http://www.it-ebooks.info/

RESULTS 253

The synergy network is characterized by relatively short path lengths, ranging
from 2 to 10 (Fig. 9.3), while the characteristic path length, or average diameter,
of the network is 5.70 (Table 9.1). Therefore, the synergy network exhibits small-
world network characteristics as in real biological networks [44], suggesting that
communication between the genes is relatively fast. The node degree distribution,
P(k), describes the likelihood that a randomly selected node has k links to its neighbors
in the network. A power–law distribution refers to the function P(k) ∼ k−γ , where k is
the degree and γ is the degree exponent, and in most biological, scale-free networks
γ ranges around 2 and 3 [44]. The degree distribution of our synergy network of AD
is shown in Figure 9.3, and γ ≈ 1.98, suggesting the synergy network, similar to other
biological networks, is scale-free.

The scale-free nature of synergy network indicated that the majority of the genes are
sparsely connected, while few of the genes (hubs) are connected to many other genes
and may play important roles in sustaining the integrity of the network, suggesting
their potential importance in the induction of the phenotype. In summary, the topology
of the synergy network differs from that of a random network, typified by a bell-like
Poisson distribution for node degrees, and suggests the existence of hub genes.

As shown in Figure 9.3 and Table 9.1, synergy network shares similar topological
characteristics with the other three networks, that is, all the node degrees in these
networks follow power–law distribution, with slightly different exponentials. Note
that the number of connected components and average shortest path length varies
across these four networks. For example, the global PPI network is much denser than
the other networks, making the characteristic path length much shorter, and indicates
the proteins in this network may communicate more efficiently. Meanwhile, the edges
in the DiffCorr network are more sparsely connected (as indicated by the number of
components), leading to a longer characteristic path length.

9.3.3 Differential Expression and Correlation Patterns for the Pairs
in Synergy Network

In the simulation analysis as described above, we demonstrated that information syn-
ergy could capture the genes with joint expression patterns that could not be identi-
fied by either differential or correlation analyses. To confirm whether this observation
holds with the AD dataset, we proceeded to investigate the differential expressions
and correlations of the genes for each connection in the AD synergy network, which
is summarized in Figure 9.4. Only a small fraction of the genes in the AD synergy
network are differentially expressed, that is, 11.92% of the 780 genes with positive
synergy and 29.58% of the 3083 genes with negative synergy (see Fig. 9.4a). Mean-
while, the majority of the gene pairs with significant information synergy are not
differentially correlated (see Fig. 9.4b), that is, 90.6% of the 511 gene pairs with pos-
itive and 92.4% of 4308 gene pairs with negative synergy have similar correlations
in each phenotype. These observations indicate that information synergy provides
complementary information to that obtained from either differential expression or
differential correlation analyses.

www.it-ebooks.info

http://www.it-ebooks.info/

254 NETWORK-BASED INFORMATION SYNERGY ANALYSIS FOR ALZHEIMER DISEASE

FIGURE 9.4 Percentages of differentially expressed genes and differentially correlated gene
pairs in synergy network.

We further investigated the distribution of the gene pairs with zero, one, or two
differentially expressed genes (see Fig. 9.4c). Interestingly, 377 of the 511 gene pairs
(over 70%) with positive synergy consist of two nondifferentially expressed genes
(grey bar in Fig. 9.4c), whereas most of the 377 gene pairs (349 out of 377) are not
differentially correlated between AD versus normal (data not shown). This suggested
the majority of these gene pairs with positive synergy likely share joint expression
pattern shown in Figure 9.1e. Meanwhile, in a majority of the gene pairs with negative
synergy, just one gene is differentially expressed and the other gene is not (gray bar
in Fig. 9.4c). For both positive and negative synergy gene pairs, only a small fraction
of them consist of two differentially expressed genes (purple bar in Fig. 9.4c). These
observations again highlight that information synergy can complement differential
analysis or differential correlation analysis, particularly by providing genes with pos-
itive information synergy. Next, we focus on the pairs with positive synergy, and
explore their biological relevance by looking at the hub genes in the network.

9.3.4 Hub Genes in the Positive Synergy Network

We have shown that positive synergy network is of particular interest, since the major-
ity of the gene pairs with positive synergy could not be captured by either differential
expression or correlation analysis. To investigate whether a positive synergy network
could contribute information on potential targets, we specifically evaluated the top
10 hub genes in the positive synergy network listed in Table 9.2.

Notably, several of these top 10 hub genes have been shown to be involved in AD.
The top gene, HDAC1 (histone deacetylase 1), can replace the occupancy of APP
intracellular domain (AICD) on the promoter of NEP (neprilysin, a Aβ-degrading
enzyme), consequently increasing the expression level of Aβ [45]. Meanwhile, in-
hibiting HDAC1 was shown to rescue cognitive deficits in a mouse model of AD [46].
It is worthwhile to mention that HDAC1 is not included in the network of differential
expression and is ranked much lower, that is, 395th among the 1985 genes in the

www.it-ebooks.info

http://www.it-ebooks.info/

SUMMARY AND CONCLUSIONS 255

TABLE 9.2 The Top 10 Hub Genes in the Synergy Network

Degree in Degree in Global
Gene Synergy Network PPI Network Description

HDAC1 11 259 Histone deacetylase 1
ATXN1 6 156 Ataxin 1
CARM1 6 22 Coactivator-associated arginine

methyltransferase 1
UBE2N 5 59 Ubiquitin-conjugating enzyme E2N
KAT5 5 88 K(lysine) acetyltransferase 5
RPAP1 5 32 RNA polymerase II associated

protein 1
AR 4 181 Androgen receptor
CDKN1B 4 45 Cyclin-dependent kinase inhibitor

1B (p27, Kip1)
ELAVL1 4 17 ELAV (embryonic lethal, abnormal

vision, Drosophila)-like 1
(Hu antigen R)

CTTN 4 32 Cortactin

network of differential correlation. Further, the next gene, ATXN1, is involved in AD
pathogenesis as a genetic risk modifier that regulates the levels of Aβ and the activity
of beta-secretase [47]. In addition, the role of AR in the etiology of AD [48,49] and
the degradation of CDKN1B (p27) in AD [50,51] have also been confirmed. With
these genes being known to play a role in AD, it questions whether the functions of the
other identified hub genes (Table 9.2), with less well-established roles in AD, should
be investigated in future studies. For example, ubiquitin–proteasome system (UPS) is
essential for the function of protein repair, turnover, and degradation functions in AD
[52], thus UBE2N (4th highest hub gene), as a component of UPS, may be a potential
target for further investigation.

9.4 SUMMARY AND CONCLUSIONS

In this study, we proposed a network-based information synergy approach to iden-
tify candidate genes involved in AD. Results obtained from simulation data and AD
microarray data suggested that, information synergy, particularly positive informa-
tion synergy, could identify gene pairs with specific joint expression patterns that
would otherwise be overlooked by differential and correlation analyses. Meanwhile,
some of the hub genes in the PPI subnetworks, consisting of positive information
synergy interactions, show biological relevance to the pathogenesis of AD, suggest-
ing that the networks obtained through information synergy could potentially iden-
tify genes involved in diseases. Moreover, the information theory used in synergy
analysis allows one to capture gene pairs with different types of relationship (either
linear or nonlinear), as long as the gene pairs provide additional information on the

www.it-ebooks.info

http://www.it-ebooks.info/

256 NETWORK-BASED INFORMATION SYNERGY ANALYSIS FOR ALZHEIMER DISEASE

phenotype. This advantage renders information synergy particularly attractive for cap-
turing gene pairs in complex scenarios, where the interactions between genes are not
linear. Taken together, information synergy is a promising complementary approach
to network-based studies.

The concept of information synergy has been applied to identify gene pairs predic-
tive of phenotypes based upon microarray data. The synergistic gene pairs inferred
from microarray data may not necessarily interact with each other physically. This
makes it difficult to interpret the biological roles of individual gene pairs, especially
when the structural or functional information is not available for many genes. This
issue is of less concern when PPI data is incorporated with the gene expression data
as physical interactions in the network, which can help facilitate the interpretation of
the functions of the genes of interest, that is, by inferring the function of the genes
through their neighbors in the network.

We have demonstrated that information synergy provides results complementary
to existing approaches in network-based studies. Previous network-based studies have
shed much light onto the biochemical features of the genes and proteins that show
changes in correlation across phenotypes, that is, smaller binding domain size or
enriched in signaling domains, and so on [53]. Exploring such structural character-
istics of the genes/proteins with positive information synergy could provide insight
on their general mechanisms and further help elucidate the molecular mechanisms
underlying diseases. In this chapter, we exemplified the potential role of the synergy
network in identifying genes of interest for AD by investigating the hub genes in a
positive synergy subnetwork. In future, further exploration of the synergy network,
that is, enrichment analysis to identify canonical pathways over-represented in the
networks, pathway–gene association analysis to reveal the genes associated with spe-
cific pathways, or modular analysis to characterize the network modules with specific
patterns in terms of information synergy (i.e., do the connections within a module
have exclusively positive or negative synergy), and so on would likely provide more
information on potential disease mechanisms.

ACKNOWLEDGMENT

This research was supported in part by the NIH (R01GM079688, R01GM089866,
and R21RR024439), the NSF (CBET 0941055, CBET 1049127, and DBI 0701709),
and the MSU Foundation.

REFERENCES

1. Y. Huang, Apolipoprotein E and Alzheimer disease, Neurology 66, S79–S85 (2006).

2. Alzheimer’s Association website (http://www.alz.org/braintour/healthy vs alzheimers.asp).

3. K. Blennow, M.J. de Leon, H. Zetterberg, Alzheimer’s disease, Lancet 368, 387–403
(2006).

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 257

4. K. Bettens, K. Sleegers, C. Van Broeckhoven, Current status on Alzheimer disease molec-
ular genetics: from past, to present, to future. Hum. Mol. Genet. 19, R4–R11 (2010).

5. M. Citron, Alzheimer’s disease: strategies for disease modification. Nat. Rev. Drug Discov.
9, 387–398 (2010).

6. A.L. Barabasi, N. Gulbahce, J. Loscalzo, Network medicine: a network-based approach
to human disease. Nat. Rev. Genet. 12, 56–68 (2011).

7. X. Wang, E. Dalkic, M. Wu, C. Chan, Gene module level analysis: identification to networks
and dynamics. Curr. Opin. Biotechnol. 19, 482–491 (2008).

8. J. Lim, T. Hao, C. Shaw, A.J. Patel, G. Szabo, et al., A protein–protein interaction network
for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125, 801–814
(2006).

9. M.A. Pujana, J.D. Han, L.M. Starita, K.N. Stevens, M. Tewari, et al., Network modeling
links breast cancer susceptibility and centrosome dysfunction. Nat. Genet. 39, 1338–1349
(2007).

10. J. Ladha, S. Donakonda, S. Agrawal, B. Thota, M.R. Srividya, et al., Glioblastoma-specific
protein interaction network identifies PP1A and CSK21 as connecting molecules between
cell cycle-associated genes. Cancer Res. 70, 6437–6447 (2010).

11. V.M. Perreau, S. Orchard, P.A. Adlard, S.A. Bellingham, R. Cappai, et al., A domain
level interaction network of amyloid precursor protein and Abeta of Alzheimer’s disease.
Proteomics 10, 2377–2395 (2010).

12. M. Soler-Lopez, A. Zanzoni, R. Lluis, U. Stelzl, P. Aloy, Interactome mapping suggests
new mechanistic details underlying Alzheimer’s disease. Genome Res. 21, 364–376 (2011).

13. Z.P. Liu, Y. Wang, X.S. Zhang, L. Chen, Identifying dysfunctional crosstalk of pathways
in various regions of Alzheimer’s disease brains. BMC Syst. Biol. 4 (Suppl. 2), S11 (2010).

14. M. Ray, W. Zhang, Analysis of Alzheimer’s disease severity across brain regions by topo-
logical analysis of gene co-expression networks. BMC Syst. Biol. 4, 136 (2010).

15. M. Krauthammer, C.A. Kaufmann, T.C. Gilliam, A. Rzhetsky, Molecular triangulation:
bridging linkage and molecular-network information for identifying candidate genes in
Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 101, 15148–15153 (2004).

16. J.Y. Chen, C. Shen, A.Y. Sivachenko, Mining Alzheimer disease relevant proteins from
integrated protein interactome data. Pac. Symp. Biocomput. 11, 367–378 (2006).

17. B. Liu, T. Jiang, S. Ma, H. Zhao, J. Li, et al., Exploring candidate genes for human brain
diseases from a brain-specific gene network. Biochem. Biophys. Res. Commun. 349, 1308–
1314 (2006).

18. T. Ideker, R. Sharan, Protein networks in disease. Genome Res. 18, 644–652 (2008).

19. A. Almudevar, L.B. Klebanov, X. Qiu, P. Salzman, A.Y. Yakovlev, Utility of correlation
measures in analysis of gene expression. NeuroRx 3, 384–395 (2006).

20. C. Olsen, P.E. Meyer, G. Bontempi, On the impact of entropy estimation on transcriptional
regulatory network inference based on mutual information. EURASIP J. Bioinform. Syst.
Biol. 2009, 308959 (2009).

21. T.S. Furey, N. Cristianini, N. Duffy, D.W. Bednarski, M. Schummer, et al., Support vector
machine classification and validation of cancer tissue samples using microarray expression
data. Bioinformatics 16, 906–914 (2000).

22. E.K. Tang, P.N. Suganthan, X. Yao, Gene selection algorithms for microarray data based
on least squares support vector machine. BMC Bioinform. 7, 95 (2006).

www.it-ebooks.info

http://www.it-ebooks.info/

258 NETWORK-BASED INFORMATION SYNERGY ANALYSIS FOR ALZHEIMER DISEASE

23. R. Diaz-Uriarte, S. Alvarez de Andres, Gene selection and classification of microarray
data using random forest. BMC Bioinform. 7, 3 (2006).

24. T.K. Paul, H. Iba, Gene selection for classification of cancers using probabilistic model
building genetic algorithm. Biosystems 82, 208–225 (2005).

25. J. Watkinson, X. Wang, T. Zheng, D. Anastassiou, Identification of gene interactions as-
sociated with disease from gene expression data using synergy networks. BMC Syst. Biol.
2, 10 (2008).

26. G. Munch, R. Schinzel, C. Loske, A. Wong, N. Durany, et al., Alzheimer’s
disease—synergistic effects of glucose deficit, oxidative stress and advanced glycation
endproducts. J. Neural Transm. 105, 439–461 (1998).

27. R.X. Santos, S.C. Correia, X. Wang, G. Perry, M.A. Smith, et al., A synergistic dysfunc-
tion of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer’s disease. J.
Alzheimers Dis. 20 (Suppl. 2), S401–S412 (2010).

28. R. Lane, H.H. Feldman, J. Meyer, Y. He, S.H. Ferris, et al., Synergistic effect of apolipopro-
tein E epsilon4 and butyrylcholinesterase K-variant on progression from mild cognitive
impairment to Alzheimer’s disease. Pharmacogenet. Genomics 18, 289–298 (2008).

29. I. Mateo, P. Sanchez-Juan, E. Rodriguez-Rodriguez, J. Infante, J.L. Vazquez-Higuera,
et al., Synergistic effect of heme oxygenase-1 and tau genetic variants on Alzheimer’s
disease risk. Dement. Geriatr. Cogn. Disord. 26, 339–342 (2008).

30. E. Schneidman, W. Bialek, M.J., 2nd Berry Synergy, redundancy, and independence in
population codes. J. Neurosci. 23, 11539–11553 (2003).

31. N. Brenner, S.P. Strong, R. Koberle, W. Bialek, R.R. de Ruyter van Steveninck, Synergy
in a neural code. Neural Comput. 12, 1531–1552 (2000).

32. V. Varadan, D.M. Miller, 3rd, D. Anastassiou, Computational inference of the molecular
logic for synaptic connectivity in C. elegans. Bioinformatics 22, e497–e506 (2006).

33. V. Varadan, D. Anastassiou, Inference of disease-related molecular logic from systems-
based microarray analysis. PLoS Comput. Biol. 2, e68 (2006).

34. D. Anastassiou, Computational analysis of the synergy among multiple interacting genes.
Mol. Syst. Biol. 3, 83 (2007).

35. T. Barrett, D.B. Troup, S.E. Wilhite, P. Ledoux, C. Evangelista, et al., NCBI GEO: archive
for functional genomics data sets—10 years on. Nucleic Acids Res. 39, D1005–1010
(2011).

36. C. Stark, B.J. Breitkreutz, A. Chatr-Aryamontri, L. Boucher, R. Oughtred, et al., The
BioGRID Interaction Database: 2011 update. Nucleic Acids Res. 39, D698–D704 (2011).

37. T.S. Keshava Prasad, R. Goel, K. Kandasamy, S. Keerthikumar, S. Kumar, et al., Hu-
man Protein Reference Database—2009 update. Nucleic Acids Res. 37, D767–D772
(2009).

38. Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J. Roy. Stat. Soc. B 57, 289–300 (1995).

39. M. Dehmer, ed. Structural Analysis of Complex Networks. 1st edn. Birkhäuser Publishing,
2011.

40. A.L. Barabasi, Z.N. Oltvai, Network biology: understanding the cell’s functional organi-
zation. Nat. Rev. Genet. 5, 101–113 (2004).

41. H. Jeong, S.P. Mason, A.L. Barabasi, Z.N. Oltvai, Lethality and centrality in protein net-
works. Nature 411, 41–42 (2001).

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 259

42. D.S. Lee, J. Park, K.A. Kay, N.A. Christakis, Z.N. Oltvai, et al., The implications of human
metabolic network topology for disease comorbidity. Proc. Natl. Acad. Sci. U.S.A. 105,
9880–9885 (2008).

43. T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms: MIT Press, 2001.

44. A.L. Barabasi, Z.N. Oltvai, Network biology: understanding the cell’s functional organi-
zation. Nat. Rev. Genet. 5, U101–U115 (2004).

45. N.D. Belyaev, K.A. Kellett, C. Beckett, N.Z. Makova, T.J. Revett, et al., The transcription-
ally active amyloid precursor protein (APP) intracellular domain is preferentially produced
from the 695 isoform of APP in a beta-secretase-dependent pathway. J. Biol. Chem. 285,
41443–41454 (2010).

46. M. Kilgore, C.A. Miller, D.M. Fass, K.M. Hennig, S.J. Haggarty, et al., Inhibitors of class 1
histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s
disease. Neuropsychopharmacology 35, 870–880 (2010).

47. C. Zhang, A. Browne, D. Child, J.R. Divito, J.A. Stevenson, et al., Loss of function of
ATXN1 increases amyloid beta-protein levels by potentiating beta-secretase processing of
beta-amyloid precursor protein. J. Biol. Chem. 285, 8515–8526 (2010).

48. S.J. Fuller, R.S. Tan, R.N. Martins, Androgens in the etiology of Alzheimer’s disease in
aging men and possible therapeutic interventions. J. Alzheimers Dis. 12, 129–142 (2007).

49. J. Raber, AR, apoE, and cognitive function. Horm. Behav. 53, 706–715 (2008).

50. U. Munoz, F. Bartolome, F. Bermejo, A. Martin-Requero, Enhanced proteasome-
dependent degradation of the CDK inhibitor p27(kip1) in immortalized lymphocytes from
Alzheimer’s dementia patients. Neurobiol. Aging 29, 1474–1484 (2008).

51. U. Munoz, F. Bartolome, N. Esteras, F. Bermejo-Pareja, A. Martin-Requero, On the mech-
anism of inhibition of p27 degradation by 15-deoxy-delta12,14-prostaglandin J2 in lym-
phoblasts of Alzheimer’s disease patients. Cell Mol. Life Sci. 65, 3507–3519 (2008).

52. B.M. Riederer, G. Leuba, A. Vernay, I.M. Riederer, The role of the ubiquitin proteasome
system in Alzheimer’s disease. Exp. Biol. Med. (Maywood) 236, 268–276 (2011).

53. I.W. Taylor, R. Linding, D. Warde-Farley, Y. Liu, C. Pesquita, et al., Dynamic modularity in
protein interaction networks predicts breast cancer outcome. Nat. Biotechnol. 27, 199–204
(2009).

www.it-ebooks.info

http://www.it-ebooks.info/

10
DENSITY-BASED SET ENUMERATION
IN STRUCTURED DATA

Elisabeth Georgii and Koji Tsuda

10.1 INTRODUCTION

One of the central topics in analyzing structured data is the detection of dense sub-
structures, often called clusters, modules, or communities. Such sets of strongly
interrelated entities provide interesting information in many different contexts, for
instance, interaction of proteins, webpage linking, citation of articles, email commu-
nication between individuals, spatial proximity of objects in an image, 3D-contact
of atoms in a macromolecule, co-occurrence of words in documents, or similarity
of genomic sequences. In graph terminology, the entities are referred to as nodes,
and interactions are represented by edges between the nodes. Different strengths of
interactive relationships can be indicated by edge weights.

This chapter presents an enumerative approach to find node sets that satisfy an
explicit interaction density criterion [1], conceptually generalizing traditional clique
search [2]. Beyond that, the described framework can enumerate dense cluster pat-
terns from asymmetric, bipartite graph structures and from higher-order associations
that involve more than two entities at the same time, forming a hypergraph [3,4].
Moreover, the method allows to integrate additional user-defined constraints in or-
der to systematically discover relevant substructures. The density of an entity set is
generally defined as the total interaction weight between entities within the set di-
vided by the maximum possible amount of interaction. We describe a reverse search
approach to detect all set patterns satisfying a user-defined minimum density thresh-
old. The main idea is to specify a parent–child relationship between set patterns that

Statistical and Machine Learning Approaches for Network Analysis, Edited by Matthias Dehmer and
Subhash C. Basak.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

261

www.it-ebooks.info

http://www.it-ebooks.info/

262 DENSITY-BASED SET ENUMERATION IN STRUCTURED DATA

results in an antimonotonic search space, which allows for effective pruning. Mining
approaches that directly control the density properties of patterns are promising in
several application fields. In molecular systems biology for instance, one important
problem is to infer protein complexes or groups of functionally related genes from
experimental measurement data. By considering different density cutoffs, it is possi-
ble to trade off precision and recall levels for the discovered patterns. Furthermore,
the enumerative method identifies overlapping patterns, and integration with gene
activity profiles can reveal context-dependent variation of interaction patterns.

The chapter is organized as follows. The next section sketches related work on
pattern detection in structured and relational data. Section 10.3 explains the dense
cluster enumeration algorithm for the basic case where input data are represented as
an undirected weighted interaction network. Section 10.4 addresses the generalization
of the method to higher-order association data and hypergraphs. Section 10.5 discusses
the presented approach and points out potential extensions.

10.2 UNSUPERVISED PATTERN DISCOVERY IN STRUCTURED DATA

Computational analysis of structural and relational data is a very broad and active
field of research. Here, we briefly review central approaches that are related to rele-
vant substructure detection, including graph mining, optimal subgraph search, graph
clustering, biclustering, itemset mining, and higher-order relational data mining.

10.2.1 Graph Mining

Graph mining refers to the search for subgraph patterns with predefined characteris-
tics, in a database of one or multiple graphs. In many cases, it is possible to design
algorithms that yield the complete set of solutions; such approaches are called enu-
merative. In the following presentation, we focus on the most common tasks. We
start with the classical problem of frequent subgraph mining [5,6]. Given a database
of labeled graphs G1, . . . , Gl, the task is to find all connected subgraphs that occur
in at least m graphs, where m is a positive integer referred to as the minimum sup-
port threshold. As the same node label may appear multiple times in each graph of
the database (e.g., atom names in a database of molecule graphs [7]), these methods
generally have to deal with the problem of subgraph isomorphism. In biological net-
works considering gene or protein relationships, the node labels within a graph are
typically unique. However, as the graphs are large, the frequency criterion is typically
combined with other criteria such as interaction density or cut thresholds, in order to
restrict the size of the output [8,9].

Other mining approaches search for substructure patterns in a single graph. While
a subgraph frequency criterion can be applied to graphs with nonunique node label-
ing [10], a popular analysis tool for uniquely labeled graphs is clique finding [2].

Definition 10.1 (Clique) Given a graph G with node set V , a clique is defined
as a subset of nodes U ⊂ V that induces a complete subgraph, that is, all pairs of

www.it-ebooks.info

http://www.it-ebooks.info/

UNSUPERVISED PATTERN DISCOVERY IN STRUCTURED DATA 263

nodes are connected by an edge. A clique is maximal if it is not contained in any
other clique.

In general, clique search is NP-complete [11]. Nevertheless, it is frequently used in
practical applications [12,13], and even more flexible pattern definitions have been
considered, for example, quasi-cliques [14–17] and pseudo-cliques [18]. They corre-
spond to dense subgraphs rather than complete subgraphs; exact definitions will be
given in Section 10.3.

10.2.2 Optimal Subgraph Search

In addition to subgraph enumeration algorithms, there exist multiple approaches to
search for (approximately) optimal subgraphs. With respect to the criterion of sub-
graph density, a number of problems have been studied. First of all, it has been shown
that finding a k-node subgraph with the maximum number of edges is NP-hard [19].
Tight approximation bounds have been derived for a simple greedy optimization
scheme [20]; the same approximation scheme has been used for directed graphs [21].
Equivalently, the problem of finding a k-node subgraph with the maximum average
number of edges per node is NP-hard [22]. On the other hand, without a size con-
straint, a subgraph with the maximum average number of edges per node can be found
in polynomial time by flow-based techniques [22,23].

Moreover, local search approaches have been used to discover dense subgraphs
around seed cliques [24,25]. Recently, linear integer programming has been suc-
cessfully applied for finding connected subgraphs with the maximum sum of node
weights, an NP-complete problem [26]. Another type of pattern is the so-called con-
nection subgraph [27], where the aim is to maximize the connectivity between a set
of given nodes while removing a large portion of the graph.

10.2.3 Graph Clustering

Graph clustering is the task of assigning the nodes of a graph into distinct groups
(clusters) such that there are many edges within a group and few edges between
different groups. This topic has been studied extensively, see Ref. [28] for a review.
One seminal work in this area is the Kernighan–Lin algorithm [29], which is a heuristic
strategy to divide a graph into components with fixed maximum size. If neither the
(maximum) size nor the number of partitions is known beforehand, a popular choice is
hierarchical clustering methods, which yield a hierarchy of clusters instead of a single
partitioning. Hierarchical methods can be divided into two classes: agglomerative and
divisive. Agglomerative strategies build the hierarchy bottom-up, starting from single-
node clusters and iteratively merging the “closest” pair into a common cluster, for
example, see Refs. [30–33].

Divisive hierarchical strategies, in contrast, work in a top-down manner, start-
ing with the entire graph and iteratively dividing it into smaller parts. An obvious
splitting criterion are graph cuts [34]. Girvan and Newman [35] use the so-called
edge betweenness measure, which is the number of node pairs with the shortest path

www.it-ebooks.info

http://www.it-ebooks.info/

264 DENSITY-BASED SET ENUMERATION IN STRUCTURED DATA

passing through a specific edge; edges bridging between clusters are expected to have
large betweenness values, so edges are removed from the graph in decreasing order of
betweenness; the same technique has also been applied to weighted graphs [36]; Luo
et al. combine this method with an agglomerative approach [37]. Several alternatives
of these measures have been investigated [38,39]. Also, divisive clustering has been
integrated with graph coarsening to achieve efficient procedures [40].

Other methods directly partition the graph into a set of clusters, without using
hierarchical decomposition steps. The most basic approach is to extract the con-
nected components [41]. An increasingly popular method is spectral clustering [42].
Technically, it is based on eigen decomposition of graph Laplacians, and has inter-
pretations related to graph cuts and random walks. Markov clustering [43,44] is also
motivated by random walks; it performs two alternating matrix operations; in contrast
to spectral clustering, one does not fix the number of clusters beforehand. Further-
more, probabilistic latent variable models have been used for graph clustering [45],
which often also allow cluster overlaps, that is, the same node may belong to different
clusters [46,47].

In many bioinformatics applications, graph clustering and dense subgraph mining
methods are augmented by integrating multiple data sources, the most common sce-
nario being the combination of protein–protein interactions and gene expression data.
One straightforward strategy is to build a new network where protein interaction links
and coexpression links are simply pooled [47], or where the edge weights are deter-
mined as a function of multiple data sources [48]. Tanay et al. [49] combine edges of
different types in a single bipartite network. Edge weights of different datasets have
to be normalized appropriately in order to be comparable in the integrated setting. In
contrast to that, other approaches keep the data sources separate and define individ-
ual constraints for each of them. A variety of criteria have been proposed, including
global and local similarity measures for gene expression profiles [14,45,50–54].

10.2.4 Bicluster Analysis

In addition to homogeneous interaction graphs such as protein interaction networks,
bipartite graphs occur very frequently in biological data analysis. Similarly as in
the previous sections, one central problem arising in that context is dense subgraph
detection. A pattern of interest would then consist of a pair of node subsets, one from
each partition, such that each node is connected to a large fraction of nodes from the
other set. This can be seen as a special instance of the biclustering problem, which
is very prominent in gene expression analysis [55–58]. Given a data matrix (e.g., the
adjacency weights of a bipartite graph), the goal is to extract subsets of rows that
are similar with respect to subsets of columns; a particular pair of a row subset and
a column subset (defining a submatrix) is called bicluster. This framework, which is
also known as co-clustering or two-mode clustering [59], contrasts with traditional
clustering approaches, which cluster either the rows according to their similarity
across all columns, or the columns according to their similarity across all rows [60].

A multitude of bicluster detection methods has been developed during the last
decade. First of all, one basic idea is to partition the bipartite graph that corresponds

www.it-ebooks.info

http://www.it-ebooks.info/

UNSUPERVISED PATTERN DISCOVERY IN STRUCTURED DATA 265

to the data matrix into distinct biclusters [61,62]. Other approaches allow for a more
flexible arrangement of biclusters, including bicluster overlap, while still optimizing
a global objective function taking the whole matrix into account [63,64]. In contrast,
enumerative approaches use local criteria based solely on individual biclusters. Many
of them are motivated by the (weighted) bipartite graph formalism and refer to some
density property of the subgraph. The widely used SAMBA method [49,65] finds
heavy subgraphs around each node. Sim et al. [66] fix the maximum number of
missing edges tolerated per node as well as minimum size constraints. In Ref. [67],
all maximal bicliques are detected and then further extended. Another work [68]
searches for all bicluster patterns that satisfy homogeneity constraints with respect to
the weight entries. Moreover, various other methods define specific bicluster criteria
and solve the problem in a nonexhaustive way, by greedy strategies or approximation
techniques [55].

10.2.5 Itemset Mining

For binary-valued data matrices, the simplest bicluster pattern of interest is a submatrix
that purely consists of 1-entries. Such patterns can be exhaustively enumerated using
itemset mining. This approach has been developed in the context of market basket
analysis [69]. There, the data represent a set of transactions, where each transaction
consists of a list of products (called items) that were purchased together. The task
of frequent itemset mining is to find all sets of items that co-occur in more than
m transactions. The frequent itemsets can be used to derive association rules of the
following kind: “if a customer bought products A and B, he or she will also buy product
C.” This information can, for instance, assist in improving shop layouts. Itemset
mining has also been applied in the biological domain, for example, gene expression
analysis [70]. The principal algorithmic idea behind itemset mining methods is based
on the observation that any subset of a frequent itemset is frequent as well. The
originally proposed Apriori algorithm [69] implements this in a level-wise search
strategy, where the frequent sets on one level determine the candidate sets on the
next level. Since then, there has been active research on improving the efficiency by
introducing additional pruning rules and investigating alternative strategies to traverse
the search space [71].

10.2.6 Relational Data Mining and Higher-Order Association Analysis

Itemset mining is only suitable for analyzing binary relations such as the transaction-
item association data described in the previous section. A natural extension is to
consider higher-order relations, which involve more than two partners. For example,
one could consider relations between purchased items, regions, and weeks of customer
transactions. The generalized mining task can be formulated as follows [72–75]:

Definition 10.2 (Relational Set Mining) Given an n-ary relation R ⊂ D1 × . . . ×
Dn, find all n-set patterns (S1, . . . , Sn) such that Si ⊂ Di for all i = 1, . . . , n and
S1 × . . . × Sn ⊂ R.

www.it-ebooks.info

http://www.it-ebooks.info/

266 DENSITY-BASED SET ENUMERATION IN STRUCTURED DATA

Generalizing the frequency criterion from itemset mining (see previous section),
one can specify minimum size thresholds for S1, . . . , Sn. In the above definition,
all domains Di are assumed to be finite (i.e., categorical); their cardinality is de-
noted by |Di|. An equivalent representation for such data is a |D1| × . . . × |Dn| array
A (also called data cube or tensor), where A(d1, . . . , dn) = 1 if (d1, . . . , dn) ∈ R,
and A(d1, . . . , dn) = 0 otherwise (di ∈ {1, . . . , |Di|}, i = 1, . . . , n). Then, an n-set
corresponds to a subarray that contains only 1-entries.

More generally, one can drop the constraint of binary values and consider tensors
with arbitrary weight entries. Such higher-order datasets occur in different application
fields such as sales analysis [72], web mining [74,76,77], neuroscience [78,79], and
computational biology [75,80,81]. Therefore, methods that deal with multiway arrays
receive increasing attention in the data mining community. One of the most prominent
topics is tensor decomposition (see Ref. 82 for a review), which can serve as a basis
for clustering or anomaly detection [83].

The goal of tensor clustering is to partition each dimension of the tensor into a
predefined number of clusters such that the resulting multiway clusters are as ho-
mogeneous as possible [84]. This can be approximated by combining the results
from clustering individual dimensions separately [85]. Zhao and Zaki [80] also mine
for homogeneous clusters, but instead of specifying the number of clusters, they fix
thresholds regarding the homogeneity of values along each dimension and detect
overlapping cluster patterns (in the three-way case). Relational models [86] focus
on binary-valued tensors, aiming at partitioning them into blocks that contain either
mostly ones or mostly zeros. Finally, there exist approaches that deal with multiple
relations or tensors at the same time, searching for clusters (communities) [84,87] or
association rules [88].

10.3 DENSE CLUSTER ENUMERATION IN WEIGHTED
INTERACTION NETWORKS

This section presents an enumerative approach to identify cluster patterns in undi-
rected weighted graphs and networks [1]. In this context, a cluster is defined as a
set of densely interacting nodes, also called module or community. The algorithm
makes use of a paradigm called reverse search, which has been introduced by Avis
and Fukuda [89]. Several extensions are described, including output filtering and in-
tegration of additional constraints. We first introduce some notation and give a precise
mathematical formulation of the dense cluster mining problem; then, we explain the
algorithm and analyze its computational complexity; finally, we outline extensions
that facilitate systematic data analysis and interpretation.

10.3.1 Notation and Problem Definition

Let us consider an undirected weighted graph with node set V . For notational conve-
nience, we assume that V is a set of consecutive indices starting from 1, that is,

V = {1, . . . , I} , (10.1)

www.it-ebooks.info

http://www.it-ebooks.info/

DENSE CLUSTER ENUMERATION IN WEIGHTED INTERACTION NETWORKS 267

where I is a positive natural number. Further, we denote by |V | the size or cardinality
of the node set, that is, the number of nodes (here, |V | = I). The corresponding
interaction weight matrix is written as

W = (wij)i,j∈V , wij = wji. (10.2)

It contains for each pair of nodes an entry, which corresponds to the weight of the
connecting edge, if existent, and has a default value of zero otherwise.1 In the follow-
ing, we assume that the weights are given relative to their maximum possible value,
so the normalized weights are bounded by 1:

wij ≤ 1 (10.3)

Negative weights are possible.2 Unweighted input graphs are translated into binary
weight matrices with 1-entries for existing edges and 0-entries for missing edges.

A cluster is defined as a nonempty subset of nodes U ⊂ V , |U| ≥ 1. The induced
subgraph corresponding to a specific cluster U is represented by the following inter-
action matrix:

W |U = (wij)i,j∈U . (10.4)

The average pairwise interaction weight within a cluster is referred to as the
cluster density.

Definition 10.3 (Cluster Density) For a node set V with interaction weight matrix
W and a cluster U ⊂ V , the density of U with respect to W is defined as

ρW (U) =

∑
i,j∈U,i<j

wij

|U|(|U| − 1)/2
. (10.5)

Here, self-interactions of nodes are not taken into account.3 Because of the weight
normalization, the largest possible density value is 1, conveniently expressed as 100%.
For |U| ≤ 1, we define ρW (U) =100%.

Now we formulate the cluster mining problem of interest.

Definition 10.4 (Dense Cluster Enumeration) Given a graph with node set V and
interaction weight matrix W , and a minimum density threshold θ > 0, find all clusters
U ⊂ V such that ρW (U) ≥ θ.

1Other default values may be specified as well.
2However, non-negative input matrices allow for additional improvements of the search, see Sections 10.3.3
and 10.3.5.
3However, they can be integrated in a similar way as node weights (see Section 10.3.8).

www.it-ebooks.info

http://www.it-ebooks.info/

268 DENSITY-BASED SET ENUMERATION IN STRUCTURED DATA

The next section introduces an exact method to solve this problem. For unweighted
input graphs, the problem is equivalent to pseudo-clique enumeration [18] (for θ <

100%) or clique search [11] (for θ = 100%).

10.3.2 Enumeration Algorithm

In the following, we describe an algorithm to solve the dense cluster enumeration
problem. Being based on a reverse search strategy [89], it generalizes a pseudo-clique
mining method for unweighted graphs [18].

10.3.2.1 Search Space
The core of any enumeration algorithm is the definition of a search space structure
that allows for efficient traversal and pruning. A canonical search scheme for set
enumeration tasks is to start with the empty set and then iteratively form larger sets by
adding one element at a time. This defines a search space that is organized in multiple
levels, having the empty set as its root; each time one moves a level downwards, the set
obtains an additional member, that is, the set cardinality increases by 1. Figure 10.1c
illustrates the search space of node sets for the example input graph with four nodes
shown in Figure 10.1a. For an efficient search, it is crucial to avoid recomputations,
that is, the same set should not be visited several times. This is usually achieved by
defining a tree structure that spans the original graph-shaped search space, that is, each
set descends from a uniquely defined parent and can have several sets as children. In
pattern mining approaches, it is very common to use lexicographical set enumeration
trees [90–92]. There, a predefined order on the elements is exploited such that a set can
only be extended by elements that are greater than all current member elements; the
extended sets form the children of the orginal set (see Figure 10.1d for an example).

As the size of the complete set enumeration tree is exponential in the number of
input elements, the practical applicability of a search procedure strongly depends on
the definition of effective pruning rules, which prevent the exploration of irrelevant
subtrees. To motivate our search algorithm for the dense cluster enumeration task,
let us first consider the special problem of clique finding. In that case, the pruning is
straightforward; if the current cluster is not a clique, we know that all supersets are
noncliques as well. More generally, this property is described as downward closure
or antimonotonicity [69].

Definition 10.5 (Antimonotonicity) A function f : 2V → R is antimonotonic if
f (U ′) ≥ f (U) for all U ′ and U with U ′ ⊂ U ⊂ V .

Here, 2V denotes the power set of V , so the function f assigns a score to any subset
of nodes in the input graph. For clique search, we define f (U) = 1 if U is a clique,
and f (U) = 0 otherwise. If the current cluster has a score of 0, all descendants will
have that score; hence, we can prune the search tree as soon as the clique criterion
is violated.

While the lexicographical search tree can be used for clique search, it is not suit-
able for solving the general dense cluster enumeration problem because the density

www.it-ebooks.info

http://www.it-ebooks.info/

DENSE CLUSTER ENUMERATION IN WEIGHTED INTERACTION NETWORKS 269

(a)

(c)

(b)

(d)

(f)(e)

1

2

0.1

4

0.9

3

1.0

0.5 0.9

4321

1 0.91.00.10
2 00.500.1
3 0.900.51.0
4 00.900.9

{} {}

{1} {2} {3} {4} {1} {2} {3} {4}

{1,2} {1,3} {1,4}{2,3} {2,4} {3,4} {1,2} {1,3} {1,4}{2,3} {2,4} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4} {1,2,3,4}

{}

{1} {2} {3} {4}

{1,2} {1,3} {1,4}{2,3} {2,4} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

DensityCluster

{1,2} 0.10
{1,2,3} 0.53
{1,2,4} 0.33
{1,3} 1.00
{1,3,4} 0.93

FIGURE 10.1 Motivating example for cluster enumeration strategy. While a lexicograph-
ical traversal of the search space does not yield density guarantees, the cluster density is
monotonically decreasing along each path of the reverse search tree. (a) Example input graph.
(b) Corresponding weight matrix. (c) Graph-shaped search space. (d) Lexicographical tree.
(e) Densities of example clusters. (f) Reverse search tree.

criterion is in general not antimonotonic. For instance, while the density decreases
when we go from {1, 3} to {1, 3, 4}, it increases when stepping from {1, 2} to {1, 2, 3}
(see Fig. 10.1e). Thus, the lexicographical structure does not provide guarantees re-
garding the maximum cluster density in subtrees, which makes it impossible to define
effective pruning rules. The key idea for the dense cluster enumeration approach con-
sists in the definition of a specific search tree where the density is monotonically
decreasing on each path from the root to a leaf. We call this structure an antimono-
tonic set enumeration tree.

www.it-ebooks.info

http://www.it-ebooks.info/

270 DENSITY-BASED SET ENUMERATION IN STRUCTURED DATA

Definition 10.6 (Antimonotonic Set Enumeration Tree) A set enumeration tree
is antimonotonic with respect to a function f : 2V → R if f (U ′) ≥ f (U) for all U ′
and U such that U ′ ⊂ U is the parent of U.

Note that in this definition, the antimonotonicity depends on a specific parent–child
relationship between sets, whereas Definition 10.5 considers general subset–superset
relations. Figure 10.1f shows a search tree that is antimonotonic with respect to the
cluster density (for the weighted example graph given in Fig. 10.1a). Regarding the
clique criterion, both this search tree and the lexicographical tree (Fig. 10.1d) are
antimonotonic because the antimonotonicity holds for any subset–superset relation.

10.3.2.2 Reduction Scheme
Next, we explain how to construct a cluster search tree that enforces antimonotonicity
of the cluster density. For that purpose, we need the definition of degree in weighted
graphs.

Definition 10.7 (Degree) Given a node u ∈ U ⊂ V , the (weighted) degree of u with
respect to the cluster U is defined as

degU (u) =
∑

j∈U,j /= u

wuj . (10.6)

The degree obviously depends on the given weight matrix W . As W remains fixed
during the whole algorithm, we omit an explicit reference to W in the notation.

The following lemma states a fundamental property of the cluster density.

Lemma 10.1 Let v ∈ U be a node with minimum degree in U, that is, for all
u ∈ U : degU (u) ≥ degU (v). Then, ρW (U \ {v}) ≥ ρW (U).

Proof: Using the formulae for cluster density and degree from Definitions 10.3 and
10.7, respectively, we can rewrite the following expression:

ρW (U \ {v}) − ρW (U)

=

(∑
i,j∈U,i<j

wij

)
−

(∑
j∈U

wvj

)

(|U| − 1)(|U| − 2)/2
−

∑
i,j∈U,i<j

wij

|U|(|U| − 1)/2

=

(∑
i,j∈U,i<j

wij

)(
1 − |U| − 2

|U|
)

− degU (v)

(|U| − 1)(|U| − 2)/2

=
1

|U|
∑
u∈U

degU (u) − degU (v)

(|U| − 1)(|U| − 2)/2

≥ 0

www.it-ebooks.info

http://www.it-ebooks.info/

DENSE CLUSTER ENUMERATION IN WEIGHTED INTERACTION NETWORKS 271

The inequality holds because of the assumption that v is a minimum degree node in
U. In summary, it follows that ρ(U \ {v}) ≥ ρ(U). �

This “weak antimonotonicity” property has been indirectly exploited as an aux-
iliary pruning criterion in pattern mining for unweighted graphs [93]. Furthermore,
iterative removal of minimum degree instances has been used to approximate dense
subgraphs [20].

In the context of dense cluster enumeration, the lemma yields the key for defining
an antimonotonic search tree. Namely, we define the parent of a certain cluster as the
cluster that is obtained by removing a minimum degree node. If there exist several
minimum degree nodes, we apply an arbitrary predefined rule to select one among
them, in order to ensure the uniqueness of the parent. For that purpose, we exploit
a specific order on the nodes; as the nodes are represented by a set of indices (see
Eq. 10.1), we here simply use the order of natural numbers. With this, the parent–child
relationship between clusters is formally described as follows.

Definition 10.8 (Cluster Parent) Given a cluster U, let v ∈ U be the unique node
having the smallest index among all minimum degree nodes, that is,

∀u ∈ U \ {v} :
[
degU (v) < degU (u)

] ∨ [
degU (v) = degU (u) ∧ v < u

]
.

Then, U \ {v} is the parent of U.

As the parent is a subset of the original cluster, this parent construction rule is
also called reduction scheme. It defines a tree structure on the search space of clus-
ters, which has two important properties: antimonotonicity and completeness (cluster
reachability). Lemma 10.1 implies that each parent cluster has at least the same den-
sity as its children, so the tree is guaranteed to be antimonotonic. The second property
refers to the fact that the tree covers the whole search space: by iterative application
of the reduction scheme, any cluster is transformed into the empty set, hence, it is
reachable on a path from the root.

10.3.2.3 Search Procedure
Given a search tree with these properties, the enumeration procedure is straightfor-
ward. We traverse the tree, for example, by depth-first search, starting from the empty
set and recursively generating children on demand as long as the density threshold is
satisfied. However, there remains one complicating fact; while the reduction scheme
allows to go from a cluster to its parent (i.e., bottom-up), it is not possible to directly
derive the children of a given cluster in a top-down search. Therefore, we have to
generate all direct supersets of the current cluster U and check whether they have U

as a parent. This paradigm is known as reverse search principle [89]. For clarity, we
reformulate the conditions of the parent–child relationship (Definition 10.8) from a
top-down perspective, that is, as it is used during the search process.

www.it-ebooks.info

http://www.it-ebooks.info/

272 DENSITY-BASED SET ENUMERATION IN STRUCTURED DATA

TABLE 10.1 Dense Cluster Enumeration Algorithm
(DCE) for a Network with Node Set V , Interaction
Weight Matrix W , and Minimum Density Threshold θ

1: DCE (V, W, θ, U) :
2: for each v ∈ V \ U do
3: if ρW (U ∪ {v}) ≥ θ and U ∪ {v} is child of U then
4: DCE (V, W, θ, U ∪ {v})
5: end if
6: end for
7: output U

U represents the current cluster; in the initial method call, U is the
empty set.

Definition 10.9 (Cluster Children) Let U be a cluster and v ∈ V \ U. The extended
cluster U∗ := U ∪ {v} is a child of U if and only if

∀u ∈ U :
[

degU∗ (v) < degU∗ (u)
] ∨ [

degU∗ (v) = degU∗ (u) ∧ v < u
]

.

With this, the dense cluster enumeration method boils down to the simple pseu-
docode shown in Table 10.1. In the beginning, the cluster U is set to the empty set.
Then, the algorithm builds extended cluster candidates with every node that is not
yet contained in U. If a candidate satisfies the density criterion and is indeed a child
of U, the search is continued recursively.4 Note that although the same set can be
considered several times as a candidate, it occurs only once as a valid child, namely
as an extension of its true parent. Hence, it will be processed only once; there is no
replication of subsearches (i.e., a specific set is used at most once during the whole
search as input of a DCE call). For an illustration of this fact, see Figure 10.1f; dotted
lines indicate unsuccessful candidates, whereas solid edges indicate true parent–child
relationships.

EXAMPLE 10.1 We go step by step through an example run of DCE for the graph
given in Figure 10.1a, with the density threshold θ set to 0.9. First, we extend the
empty set by element 1; {1} is trivially dense and a child of the empty set, so we
try to further extend it. Candidate {1,2} is not sufficiently dense; the subsequent
candidates {1,3} and {1,4} satisfy the density threshold, but are not children of {1}.
Next candidate and true child of the empty set is {2}. Candidates {1,2}, {2,3}, and
{2,4} fail the density criterion, so we go to set {3}. {1,3} is dense and a true child, so
we next consider {1,2,3}, but it does not satisfy the density threshold. {1,3,4} does
and is a true child, but {1,2,3,4} is not a dense cluster, and we continue with the next
candidate of {3}, which is {2,3}, and so forth.

4The density check comes first because it is computationally cheaper, see next section.

www.it-ebooks.info

http://www.it-ebooks.info/

DENSE CLUSTER ENUMERATION IN WEIGHTED INTERACTION NETWORKS 273

The correctness of the algorithm follows directly from the antimonotonicity and com-
pleteness properties discussed above; that is, it finds all clusters that satisfy the given
density threshold. Apart from the presented depth-first search approach, other tree
traversal strategies are applicable as well, such as breadth-first search, top-k search,
or iterative deepening variants [94].

10.3.3 Efficient Generation of Children

The central step of a reverse search algorithm is the generation of children for the
current solution. Therefore, engineering of this process is important for the efficiency
of the method. Here, we describe some additional details for the implementation of
the dense cluster enumeration approach.

First of all, the density of a cluster candidate and the degree values of its nodes can
be calculated incrementally. For that purpose, we maintain an array d of length |V |
where we store the degree of each node with respect to the current cluster U; more
precisely, it contains for the nodes in U the degree value with respect to U, and for all
nodes v ∈ V \ U the degree value looking one potential extension step ahead, that is,

dU (v) =
{

degU (v) if v ∈ U ,

degU∪{v}(v) if v ∈ V \ U .
(10.7)

In addition, we keep track of the total weight of the current cluster, which is equivalent
to the following expressions:

totalWeight(U) =
∑

i,j∈U,i<j

wij = 1
2

∑
u∈U

degU (u) (10.8)

This allows to check in constant time whether the candidate U ∪ {v} satisfies the
density criterion:

ρW (U ∪ {v}) ≥ θ ⇐⇒ totalWeight(U) + dU (v) ≥ θ |U|(|U| + 1)/2 (10.9)

For each successful candidate U ∪ {v}, we further investigate whether it actually is a
child of the cluster U. For this, we have to test the conditions given in Definition 10.9,
which requires O(|U|) operations (assuming constant access to the entries in W);
we have to determine the values of degU∪{v}(u) = dU (u) + wuv for all u ∈ U and
compare them with degU∪{v}(v) = dU (v). In several cases, however, it is possible to
skip these computations and decide in constant time whether U ∪ {v} is a child or
not. The following two lemmata describe such speed-up rules.

Lemma 10.2 Given a cluster U with respect to the interaction weight matrix W ,
let u∗ ∈ U be the previously added node. Let us consider a node v ∈ V \ U. If W is
non-negative, the following rule holds:

[dU (v) < dU (u∗)] ∨ [dU (v) = dU (u∗) ∧ v < u∗] =⇒ U ∪ {v} is a child of U.

www.it-ebooks.info

http://www.it-ebooks.info/

274 DENSITY-BASED SET ENUMERATION IN STRUCTURED DATA

Proof: By definition, u∗ is the smallest among the minimum degree nodes in U. As
W contains only non-negative entries, we obtain for u ∈ U degU∪{v}(u) = dU (u) +
wuv ≥ dU (u) ≥ dU (u∗). Further, degU∪{v}(v) is equal to dU (v) by definition. In the
case ofdU (v) < dU (u∗), it follows that degU∪{v}(v) = dU (v) < dU (u∗) ≤ degU∪{v}(u)
for u ∈ U, so v is the unique node with minimum degree in U ∪ {v}. In the second
case, an analogous derivation shows that v is the node with smallest index in the set
of minimum degree nodes in U ∪ {v}. �

Lemma 10.3 Given a (normalized) weight matrix W and a cluster U, let u∗ ∈ U

be the previously added node. For v ∈ V \ U, the following rule holds:

[dU (v) > dU (u∗) + 1] ∨ [dU (v) = dU (u∗) + 1 ∧ v > u∗]
=⇒ U ∪ {v} is not a child of U.

Proof: By assumption, wij ≤ 1 for all i, j ∈ V , so degU∪{v}(u∗) = dU (u∗) + wu∗v ≤
dU (u∗) + 1. If dU (v) > dU (u∗) + 1, it follows directly that degU∪{v}(v) = dU (v) >

degU∪{v}(u∗), so v cannot be a minimum degree node. A similar argument holds for
the case dU (v) = dU (u∗) + 1 ∧ v > u∗. �

Further efficiency improvements can be achieved by keeping candidate nodes
sorted according to their degree values, see Ref. [18].

10.3.4 Complexity

In combinatorial enumeration problems, the output size (i.e., the number of solution
patterns) can be exponential in the input size. As an extreme example, a fully connected
input graph with node set V contains 2|V | cliques; in other words, each subset of nodes
appears in the output. Therefore, rather than the total running time, a conventional
complexity measure for enumeration methods is the time between two consecutive
solution patterns, which is called delay [95–97]. In the following, we show that the
reverse search algorithm for dense cluster enumeration has polynomial delay.

Using the degree array implementation described in the previous section, each
recursion step of Algorithm 10.1 needs O(|V | + |V \ U| · |U|) operations, for up-
dating the degree array and generating the children of the current cluster U. In the
worst case, we perform for each candidate node a temporary update for the degree
values of the nodes in U and compare them to its own degree value. However, in
practice, the number of operations is typically much smaller because many candi-
dates already fail at the density check, and the rules from Lemmas 10.2 and 10.3
often allow to circumvent the temporary update step. To estimate the delay to the
subsequent solution pattern, we consider a small modification of the algorithm. If the
recursion depth is odd, we output the cluster before the recursive calls, and otherwise
afterwards. Thereby, any three consecutive iterations of the code yield at least one

www.it-ebooks.info

http://www.it-ebooks.info/

DENSE CLUSTER ENUMERATION IN WEIGHTED INTERACTION NETWORKS 275

FIGURE 10.2 Illustration of reverse search with the odd–even output method. Sequence of
traversal steps for a subtree of the example in Figure 10.1. The boxes indicate the cluster that
is currently investigated. The solid boxes correspond to solution clusters; the dashed boxes
correspond to candidates that are pruned. For that, we assume a minimum density threshold
of 0.9. Note that each solution cluster gives rise to a new recursive call. The numbered lines
indicate the levels of recursion depth. After three recursive calls, two of which are completely
executed ({1, 3} and {1, 3, 4}), the output contains three solution patterns.

output.5 This computational trick is known as the odd–even output method [18,98].
For illustration, we show in Figure 10.2 an example execution of the algorithm. Now,
the delay has the same complexity as the execution of one recursion step, that is,

5Note that without this modification, the algorithm would output solutions only after having reached leaf
clusters of the search tree (i.e., after a sequence of recursive calls).

www.it-ebooks.info

http://www.it-ebooks.info/

276 DENSITY-BASED SET ENUMERATION IN STRUCTURED DATA

O(|V | + |V \ U| · |U|), where U is the current solution. More generally, let the Umax
be the largest solution pattern; then, the delay is bounded by O(|V | · |Umax|), so it is
at most quadratic in the number of nodes in the network (in practice |Umax| � |V |).
We summarize our (worst-case) analysis in the following theorem.

Theorem 10.1 For a given input graph with node set V , the dense cluster enu-
meration problem can be solved by a reverse search algorithm that has a delay
of O(|V |2).

In contrast to that, straightforward branch-and-bound strategies might need exponen-
tial time between two outputs because they have to solve an NP-complete problem in
each recursive step [18]. Moreover, the reverse search approach is directly compat-
ible with distributed computation because different branches of the search tree can
be investigated in parallel. Finally, the memory requirements of the recursive imple-
mentation are also polynomial in the input size. For each recursive call, we store the
current cluster U and the degree array of length |V |. Hence, the space complexity
depends on the maximum recursion depth, |Umax|, and is given by O(|Umax| · |V |)
plus the space needed for the input matrix. Using a simple implementation with a
full matrix representation, the total space complexity of the algorithm amounts to
O(|V |2), but improvements for sparse settings are conceivable.

10.3.5 Output Representation

As enumerative approaches potentially return a large solution set, we discuss in this
section how to obtain a user-friendly representation of the dense cluster enumera-
tion output. In particular, subcluster solutions can be efficiently eliminated, and the
remaining clusters are ranked according to their statistical significance.

10.3.5.1 Locally Maximal Clusters
Usually, the user is not interested in clusters that are subsets of other cluster solutions;
rather, the most comprehensive clusters are most relevant for further analyses. There-
fore, the concept of maximality is widely used in pattern mining approaches [2,92,99–
101]. In the context of dense cluster mining, it can be formulated as follows.

Definition 10.10 (Maximal Dense Cluster) A dense cluster is called maximal if it
is not contained in any other dense cluster.

A straightforward approach to obtain the set of maximal solutions would be to go for
each newly detected cluster through all previous solutions, checking for inclusions.
However, the structure of our reverse search algorithm allows us to reduce the number
of solutions in the output in a meaningful way without any additional costs. We simply
set a flag that indicates whether there exists a direct supercluster (i.e., a cluster with
one additional node) that also satisfies the minimum density threshold (see algorithm
in Table 10.2). If that is the case, we do not output the current cluster, otherwise we
do. This yields us the set of all locally maximal dense clusters.

www.it-ebooks.info

http://www.it-ebooks.info/

DENSE CLUSTER ENUMERATION IN WEIGHTED INTERACTION NETWORKS 277

TABLE 10.2 Enumeration of Locally Maximal Dense
Clusters for a Network with Node set V , Interaction
Weight Matrix W , and Minimum Density Threshold θ

1: DCE lmax (V, W, θ, U) :
2: locallyMaximal = true
3: for each v ∈ V \ U do
4: if ρW (U ∪ {v}) ≥ θ then
5: locallyMaximal = false
6: if U ∪ {v} is child of U then
7: DCE lmax (V, W, θ, U ∪ {v})
8: end if
9: end if

10: end for
11: if locallyMaximal then
12: output U

13: end if

U represents the current module; in the initial method call, U is the
empty set.

Definition 10.11 (Locally Maximal Dense Cluster) A dense cluster U is called
locally maximal if for all v ∈ V \ U, U ∪ {v} does not satisfy the minimum density
threshold.

10.3.5.2 Cluster Ranking
Even after filtering the results for local maximality or other predefined criteria, the
solution set might be large. Therefore, it is important to provide a meaningful ranking
criterion for the discovered clusters. A widely used concept to measure the uncom-
monness or statistical significance of patterns are p-values. In general, the p-value
of a certain pattern is defined as the probability that a randomly selected pattern of
equal size is at least as “good” as the given pattern [102]. In our case, the statistics to
measure the quality of an outcome U is its density. Regarding the model for random
selection, the simplest choice is to draw |U| nodes without replacement from the
network at hand. The probability that this produces a cluster with at least the same
density as the given pattern U is calculated by the following expression:

pW (U) = ∣∣{U ′ ⊂ V : |U ′| = |U| ∧ ρW (U ′) ≥ ρW (U)}∣∣/
(

|V |
|U|

)
(10.10)

The completeness of our dense cluster enumeration approach enables us to determine
the numerator exactly, that is, we can compute for each detected cluster an exact p-
value [102]. For that purpose, we have to keep track of the densities and the sizes of all
solutions we encounter during the search. If we maintain for each cluster size a sorted
list of densities, one pass is sufficient to obtain the p-values for all output clusters
of that size. Lower p-values indicate more remarkable or surprising patterns, so the

www.it-ebooks.info

http://www.it-ebooks.info/

278 DENSITY-BASED SET ENUMERATION IN STRUCTURED DATA

results are sorted in increasing order of their p-values. This ranking scheme captures
the intuition that the importance of a cluster increases with its size and density, which
is used in other ranking measures as well. For instance, the product of cluster size
and density has been proposed as a possible criterion [25]. Furthermore, this p-value
specifically refers to the network at hand, in contrast to significance measures that are
based on reference network models [103]. This property can be advantageous if real
networks violate the assumptions of network models.

Other cluster finding approaches calculate p-values by assessing the number of
interactions within the cluster relative to the number of interactions between clus-
ter nodes and the remaining network [104]; in that case, interaction weights are
ignored. Finally, it is very common to estimate empirical p-values by generating
multiple random networks with the same degree distribution as the given input net-
work [105]. The p-value criterion formulated above does not take the node degrees
into account. However, more sophisticated approaches respecting degree distributions
are conceivable.

10.3.6 Degree-Based Cluster Criteria

So far, our primary criterion of interest has been the density of interactions across the
whole cluster. Here, we discuss more specific criteria that refer to individual cluster
nodes.

10.3.6.1 Minimum Degree
The cluster density criterion is very flexible, allowing for missing or weak edges to a
certain extent; in particular, for a fix density threshold, the flexibility increases with
growing cluster size. While this property is advantageous in many situations (e.g.,
for finding clusters supported by a large number of weak edges as well as clusters
containing few, but very strong edges), there can also occur undesired artifacts, a large
dense cluster might tolerate the addition of several loosely connected nodes without
violating the density threshold. This effect can blow up the number of solutions con-
siderably, even after selection for (local) maximality, because the same core cluster
can appear in many different variants, each time augmented by a few loosely attached,
possibly irrelevant nodes. Of course, an obvious remedy would be to choose a stricter
density threshold, but this could lead to the loss of other interesting solutions. There-
fore, we introduce an optional filtering criterion for clusters, which fixes a minimum
degree threshold for cluster nodes.

Definition 10.12 (Minimum Degree Threshold) A cluster U satisfies the minimum
degree threshold t if degU (u) > t for all u ∈ U.

By default, we set t = 0, that is, clusters containing isolated nodes or nodes with
negative degree are not considered as solutions. If the interaction matrix W contains
only non-negative entries, it is straightforward to search for clusters that are locally
maximal with respect to the new combined criterion, consisting of a minimum den-
sity threshold and a minimum degree threshold; here, a solution cluster U is locally

www.it-ebooks.info

http://www.it-ebooks.info/

DENSE CLUSTER ENUMERATION IN WEIGHTED INTERACTION NETWORKS 279

maximal if and only if ∀v ∈ V \ U : ρW (U ∪ {v}) < θ ∨ minu∈U∪{v} degU∪{v}(u) ≤
0. For mixed-sign input data, the situation is more complicated because the degree of a
node does not monotonically increase with the extension of the cluster. Therefore, one
either needs additional costs to check the local maximality, or resort to considering
maximality with respect to own descendants only.

10.3.7 Minimum Relative Degree and Quasi-Cliques

A drawback of the minimum degree criterion is that it specifies the threshold
irrespective of the cluster size. That means, for low thresholds we will get potentially
undesired weakly connected extensions of large clusters, whereas high thresholds a
priori exclude small clusters. Therefore, it can be meaningful to replace the combi-
nation of density and minimum degree criteria by the following minimum relative
degree criterion.

Definition 10.13 (Minimum Relative Degree Threshold) The minimum relative
degree threshold γ is satisfied for a cluster U if degU (u)/(|U| − 1) ≥ γ for all u ∈ U.

This condition considers the density with respect to each individual cluster node and
thereby guarantees a certain balance in the distribution of the weight among the nodes
in a cluster, which is a reasonable requirement in many applications. For unweighted
graphs, this kind of pattern is known as γ-quasi-clique [14–17].

Definition 10.14 (γ-Quasi-Clique) A node set U is a γ-quasi-clique if each node
has edges to at least �γ(|U| − 1)� other nodes in U.

It is easy to verify that a cluster satisfying the minimum relative degree threshold γ has
a density of at least γ . On the other hand, for a cluster with density ≥γ the minimum
relative degree is not necessarily greater than or equal to γ . Figure 10.3 illustrates this
relationship between cluster density and minimum relative degree. Unfortunately, we
cannot mine directly for clusters that satisfy the minimum relative degree criterion,
because it inherently does not allow to define an antimonotonic reduction scheme.

B C

D E

F

A

B C

D E

F

A

B C

D E

F

A

(a) (b) (c)

FIGURE 10.3 Minimum relative degree versus density. While the clusters (a–c) all have the
same density (3/5), the minimum relative degree varies: (a) 3/5, (b) 1/5, (c) 0.

www.it-ebooks.info

http://www.it-ebooks.info/

280 DENSITY-BASED SET ENUMERATION IN STRUCTURED DATA

For instance, let us consider the cluster in Figure 10.3a. The minimum relative degree
is 3/5. However, no matter which node we remove, the resulting cluster will have a
minimum relative degree of 2/4. Therefore, we have to use a more general criterion
during the search and perform a filtering step to select the actual solutions. One
possible approach is to enumerate by reverse search all clusters with density ≥γ

and use similar strategies as with minimum degree thresholds to filter the clusters.
For unweighted input graphs, alternative approaches have been developed, which are
described in the following section.

10.3.7.1 Approaches to Quasi-Clique Mining
We briefly review the major techniques for γ-quasi-clique enumeration used in exist-
ing work [14–17]. The basic search strategy is depth-first search in a lexicographical
set enumeration tree. As it lacks an antimonotonicity property with respect to the
quasi-clique criterion, the pruning is based on other characteristics. The first rule is
based on the diameter of γ-quasi-cliques. In general, the diameter of a subgraph is
defined as the maximum shortest path length between any pair of nodes. For ex-
ample, the graph in Figure 10.3a has diameter 2. It turns out that the diameter of a
γ-quasi-clique U can be bounded in dependence of the minimum relative degree
threshold γ and the number of nodes |U|.

Lemma 10.4 Let U be a γ-quasi-clique (|U| > 1). Further, let diam(U) denote the
diameter of U. Then,

diam(U)

{= 1 if 1 ≥ γ > |U|−2
|U|−1

≤ 2 if |U|−2
|U|−1 ≥ γ ≥ 1

2

.

For the proof and upper bounds of the diameter for smaller γ , we refer to Ref. [17].
With this lemma, we can restrict the set of candidate nodes for extending a given set
of nodes:

Lemma 10.5 Let U ⊂ V be the current set of nodes and u ∈ U. Further, we denote
by Nb

V (u) the b-step neighborhood of u with respect to V , that is, all nodes in V that
are reachable from u by a path of length ≤b. If there exists a γ-quasi-clique Q with
U ⊂ Q ⊂ V , each node v ∈ Q \ U satisfies

v ∈
⋂
u∈U

Nb
V (u) ,

where b is the upper bound of the diameter of a γ-quasi-clique.

Consequently, we can discard candidate nodes that are not included in the intersection
of theb-neighborhoods of the current nodes. Beyond that, many additional refinements
of γ-quasi-clique mining have been proposed, including degree-dependent pruning,
look-ahead strategies, and candidate sorting (see Refs. 15–17 for details).

www.it-ebooks.info

http://www.it-ebooks.info/

DENSE CLUSTER ENUMERATION IN WEIGHTED INTERACTION NETWORKS 281

One problem of the existing quasi-clique mining approaches is that the underlying
search tree is not antimonotonic. Consequently, indirect criteria have to be used to de-
cide where pruning is possible. Often, one single criterion is not sufficient to achieve
an efficient search. For instance, the diameter-based pruning can be problematic for
input graphs that contain highly connected nodes (“hubs”), because the b-step neigh-
borhoods of nodes and their intersection becomes very large. Therefore, it is crucial
for the feasibility of the approach to combine several such criteria, as suggested in
the literature [14–17].

As the cluster density criterion is a direct generalization of the γ-quasi-clique cri-
terion and allows to construct an antimonotonic search tree, an interesting alternative
could be to exploit the dense cluster enumeration strategy for quasi-clique mining.
This is particularly promising considering the fact that pruning rules from previ-
ous quasi-clique mining methods can also be integrated into the framework, thereby
combining the advantageous properties of both approaches to achieve a high prun-
ing potential. Furthermore, it would be interesting to extend the quasi-clique pruning
concepts to the minimum relative degree criterion for weighted input graphs. Finally,
a combination of topology-based and weight-based criteria could also be fruitful for
cluster detection in weighted graphs. Here, we focus on search criteria that consider
exclusively the interactions within a cluster. However, depending on the application
scenario, it might be desirable to take outgoing edges into account as well. In the
literature, a number of different approaches to combine these two aspects have been
studied (see, e.g., Refs. 37,39,106,107).

10.3.8 Integration of Node Weights

So far, the density criterion for clusters takes only interaction weights into account.
However, node weights also play a role in many biological applications; they are
commonly used to indicate the (measured or estimated) relevance of a node for the
biological problem at hand. In this section, we discuss how to integrate node weights
into the cluster mining process. In contrast to cluster finding approaches that use
node weights to preprocess the input graph (i.e., remove low-weight nodes) [105],
we directly incorporate them into the search criterion.

Let us consider again an input network with node set V . We assume that each
node i ∈ V has an assigned node weight, denoted by oi. With this, we define the node
density of a cluster.

Definition 10.15 (Node Density) Given a cluster U ⊂ V and node weights o =
(oi)i∈V , the node density is defined as

ρo(U) = 1

|U|
∑
i∈U

oi . (10.11)

That means, the node density corresponds to the average node weight within
a cluster. For clarity, we use the term interaction density to refer to the previous

www.it-ebooks.info

http://www.it-ebooks.info/

282 DENSITY-BASED SET ENUMERATION IN STRUCTURED DATA

definition of cluster density, the average pairwise interaction weight (see Defini-
tion 10.3). Now we introduce a combined density criterion, which includes interaction
weights, node weights, and a calibration parameter α.

Definition 10.16 (Combined Density) Given a cluster U ⊂ V , the combined den-
sity is defined as

ρα,W,o(U) = 1
1+α

(ρW (U) + α ρo(U)) , (10.12)

where α ≥ 0.

In other words, the combined density is a weighted sum of the interaction den-
sity and the node density, where the node contribution obtains the α-fold weight of
the interaction contribution. A straightforward method for enumerating all clusters
with ρα,W,o(U) ≥ θ can be obtained by transforming the task to the basic cluster
enumeration problem involving only interaction weights:

1. Construct a transformed interaction weight matrix Wnew:

wnew
ij = 1

1+α

(
wij + α

(oi+oj)
2

)
(10.13)

2. Use the standard DCE algorithm to enumerate all clusters U that satisfy the
following criterion:

ρWnew (U) ≥ θ (10.14)

The equivalence of ρWnew (U) and ρα,W,o(U) follows directly from the definitions
of interaction and node density. The transformed interaction weight matrix Wnew is
typically less sparse than the original interaction weight matrix W , that is, it has more
nonzero values. Alternatively to the combined density criterion, it is conceivable
to consider the two criteria separately and define individual thresholds for each of
them; more generally, one could consider various types of criteria at the same time,
also relating to several different networks. However, even if enumeration tasks for
individual criteria can be solved with antimonotonic search trees, it is nontrivial to
design efficient methods to search for patterns that satisfy all criteria. In particular, a
given cluster does not necessarily have a subcluster that guarantees antimonotonicity
with respect to all criteria and could serve as a parent in a global antimonotonic search
tree [107]. One obvious solution strategy is to construct an efficiently prunable search
tree with respect to the strictest criteria and filter the results afterwards according to
the remaining criteria.

10.3.9 Constraint Integration

Often, it is desirable to restrict the dense cluster search by some additional criteria.
The described enumeration framework allows us to incorporate and systematically

www.it-ebooks.info

http://www.it-ebooks.info/

DENSE CLUSTER ENUMERATION IN WEIGHTED INTERACTION NETWORKS 283

Positive

Negative

M

M

N

N

O

O

P

P

K

K

M NNN

P

K

L

L

M N

O P

K LL

M

O P

K

M

O OP

K LL

A

A

B

B

C

C

D

D

E

E

A

B C

D E

A

B C

D E

A

B C

D E

A

B C

D E

Conditions

N
on

sp
ec

ifi
c

S
pe

ci
fic

FIGURE 10.4 Integration of node profile data into network analysis. The combination of
the interaction density criterion and node profiles allows to focus on clusters with consistent
states of all nodes across a subset of conditions.

exploit various types of constraints defining further the cluster characteristics or in-
volving external datasets. In the following subsections, we exemplarily present some
constraints that actively contribute to pruning during the search; constraint-based
output filtering has been discussed in Section 10.3.6.

10.3.9.1 Constraints from External Data Sources
Often, integration of background knowledge or other data sources in the mining
process is crucial to the enhancement of the relevance of patterns. This particularly
applies to systems biology studies. One useful criterion are consistency constraints
with respect to node profile data [1], as illustrated in Figure 10.4. Given a discrete-
valued profile for each node, we call a cluster consistent if all its nodes share a
common subprofile. In the context of protein interaction data, we could for instance
consider profiles that indicate presence or absence of proteins in different types of
cells or subcellular compartments. In that case, clusters correspond to putative protein
complexes that are “realizable” in living cells and therefore more plausible than
clusters without protein co-occurrence. Formally, we define the concept of consistency
as follows.

Definition 10.17 (Consistency) Let V be the node set of the input network and
U ⊂ V a cluster. Let X = (xij)i∈V,j∈C be an auxiliary profile matrix, where C denotes
the set of columns (representing different conditions) and the entries xij take values
from a set of discrete states S. Given a state s ∈ S, a particular column c ∈ C is said
to be s-consistent with respect to U if

xuc = s for all u ∈ U .

www.it-ebooks.info

http://www.it-ebooks.info/

284 DENSITY-BASED SET ENUMERATION IN STRUCTURED DATA

The number of s-consistent columns with respect to U is denoted by fs(U). The cluster
U is consistent with respect to s if

fs(U) ≥ ns ,

where ns is a prespecified (non-negative) integer.

To control the consistency of cluster profiles, we fix minimum thresholds ns for
the frequencies fs(U) of the different states s. Then, we can formulate the constrained
dense cluster enumeration task.

Definition 10.18 (Dense Cluster Enumeration with Consistency Constraints)
Given a graph with node set V and weight matrix W , a density threshold θ > 0,
an auxiliary profile matrix (xij)i∈V,j∈C with xij ∈ S, and integers ns for all s ∈ S, find
all clusters U ⊂ V such that ρW (U) ≥ θ and fs(U) ≥ ns for all s ∈ S.

If we are only interested in consistency with respect to one specific state, the thresh-
olds for the other states are simply set to 0. For example, one might look for protein
clusters with consistent presence in a cellular compartment, ignoring patterns of co-
ordinated absence. Such constraints can lead to a considerable speed-up of the search
procedure. Namely, we can exploit pruning techniques from traditional frequent item-
set mining [69], based on the observation of antimonotonicity (see Definition 10.5).

Lemma 10.6 The consistency criterion satisfies the antimonotonicity property,
that is,

U ′ ⊂ U =⇒ fs(U
′) ≥ fs(U) .

The proof is obvious. In other words, cluster extension cannot increase the fre-
quency of consistent columns, see Figure 10.5 for illustration. When adding node F
to the cluster {A,B,C,D,E}, the number of consistent 1-columns shrinks, whereas the
number of consistent 0-columns is left unchanged. To determine the frequencies of
consistent columns for {A,B,C,D,E,F}, only the columns of F that were consistent

Cluster U f1(U) f0(U)

{A,B,C,D,E} 22
{A,B,C,D,E,F} 21

A
B
C
D
E

F

FIGURE 10.5 Antimonotonicity of consistency constraints. Given the example profile on
the right, the table shows the frequencies of consistent columns for the 1-state (gray) and for
the 0-state (black) before and after cluster extension.

www.it-ebooks.info

http://www.it-ebooks.info/

DENSE CLUSTER ENUMERATION IN WEIGHTED INTERACTION NETWORKS 285

with respect to {A,B,C,D,E} need to be considered. The lemma implies that we can
prune the search tree whenever a cluster does not satisfy the frequency requirements.

The described framework can be applied to incorporate any kind of antimonotonic
constraints. Furthermore, one can use arbitrarily many of these constraints at the same
time, potentially involving several different data sources. Beside profile consistency,
another prominent example of antimonotonic constraints on external data are node
pair constraints. Assume we have an additional weight matrix containing an entry
for each pair of nodes. This could be a similarity or distance matrix that is based on
another criterion or comes from another data source. Then, constraints that define
minimum or maximum weight thresholds for all node pairs in a cluster are antimono-
tonic, if a cluster contains a pair that violates the threshold, all its superclusters will not
satisfy the constraint. Finally, not all constraints that are potentially interesting have
the antimonotonicity property. This applies for instance to requirements specifying
properties for a minimum percentage of cluster nodes. Sometimes it might be possible
to derive bounds for pruning; otherwise, they are only used for output filtering, without
accelerating the search.

10.3.9.2 Connectivity Constraints
The density criterion for clusters does not necessarily guarantee the connectivity of
the corresponding subgraph. A subgraph is connected if every node is reachable from
every other node via a path, that is, a series of (nonzero) edges. For simplicity, we
here focus on interaction matrices with non-negative weights, although extensions to
mixed-sign weights are possible. As already mentioned in Section 10.3.6, a cluster
might tolerate a certain fraction of weakly connected or even disconnected nodes;
also, it might fall apart into separate components. These problems arise in particular
for large clusters or low density thresholds.

However, in many applications it is meaningful to consider only connected clusters
as results. Unfortunately, we nevertheless have to visit disconnected clusters during
the search because the connectivity property is not antimonotonic with respect to
the density-based reverse search tree; that is, connected clusters may descend from
disconnected ones, as the example in Figure 10.6 shows. An easy way to check
whether a cluster is connected is a depth-first search traversal of the induced subgraph.

(a) (b) (c) (d)

A

B C

E E

F G C

E

F GB C F G

A

B C

E

F G

D

FIGURE 10.6 Example reduction of a cluster. It shows that a connected cluster (a) can
have disconnected ancestors (b–d). In particular, one ancestor has an isolated node (d). For the
uniqueness of parents, a lexicographical order on the nodes is assumed.

www.it-ebooks.info

http://www.it-ebooks.info/

286 DENSITY-BASED SET ENUMERATION IN STRUCTURED DATA

However, the connectivity criterion can also contribute to the pruning of the density-
based search tree.

Definition 10.19 (Isolated Node) Given a cluster U, a node u ∈ U is called isolated
if degU (u) = 0.

Lemma 10.7 Let W = (wij)i,j∈V be a weight matrix representing the input network
such that wij > 0 if the nodes i and j are connected by an edge, and wij = 0 otherwise.
Then, a cluster with two isolated nodes cannot have any connected descendant.

Proof: Let us consider a connected cluster, on which we iteratively apply the
reduction scheme, that is, in each step we transform the current cluster into its
direct ancestor in the search tree (Definition 10.8). During this process, we might
encounter clusters that include an isolated node (see Fig. 10.6). Whenever this hap-
pens, the isolated node(s) will be removed in the next reduction step(s) because
they are the minimum degree nodes; as removals of isolated instances leave the de-
grees of other nodes unchanged, they cannot produce new isolated nodes. Hence,
isolated nodes cannot be accumulated during the reduction. It remains to show
that a single reduction step on a cluster without isolated nodes cannot produce
two or more isolated nodes. Let us assume this would be possible. We denote by
U the original cluster, that is, degU (u) > 0 for all u ∈ U. Further, let u∗ ∈ U be
the node that is removed, and let u1, u2 ∈ U \ {u∗} be the isolated nodes in the
resulting cluster, that is, degU\{u∗}(u1) = degU\{u∗}(u2) = 0. As degU (u1) > 0 and
degU (u2) > 0, there have to exist edges {u1, u

∗} and {u2, u
∗} with wu1u

∗ > 0 and
wu2u

∗ > 0. This implies degU (u∗) ≥ wu1u
∗ + wu2u

∗ > wu1u
∗ = degU (u1) and ana-

logously degU (u∗) > degU (u2), which is a contradiction to U \ {u∗} being the
parent of U. �

This implies that we can refrain from extending clusters that have two isolated
nodes. By additionally activating the minimum degree filtering step explained in
Section 10.3.6, one can make sure that any cluster with isolated nodes is eliminated
from the output. Clearly, the absence of isolated nodes does not guarantee yet that the
cluster is indeed connected. Other connectivity-based pruning rules are possible. In
fact, there exists a reverse search tree to enumerate connected node sets [89], but it is
different from the density-based reverse search tree, and an effective combination of
two search trees is generally difficult (see Section 10.3.8). However, for non-negative
input data and density-cutoffs greater than 0.5, one can construct antimonotonic search
schemes to enumerate patterns that are both dense and connected [108,109].

10.3.9.3 Cardinality and Branching Restrictions
Sometimes it is possible to specify in advance a size range for the clusters of interest.
As our search strategy extends the clusters by exactly one node in each step, it can
naturally respect thresholds for the maximum number of nodes in a cluster. Minimum
cardinality constraints, on the contrary, are a popular means to eliminate insignificant
results. Being nonantimonotonic, they do not explicitly contribute to speed up the

www.it-ebooks.info

http://www.it-ebooks.info/

DENSE CLUSTER ENUMERATION IN HIGHER-ORDER ASSOCIATION DATA 287

search procedure. However, in the case of additional minimum (relative) degree con-
straints (Section 10.3.6), we can exploit minimum cardinality constraints to a priori
remove low-degree nodes from consideration.

Due to the completeness of the dense cluster enumeration, the method might visit
a large number of overlapping clusters, in particular, it will consider all dense sub-
clusters of a large solution cluster. A simple way to control the generation of similar
clusters are maximum branching constraints. While maximum cardinality thresholds
constrain the depth of a search tree, branching criteria constrain the width of sub-
trees by restricting the maximum number of children per cluster to k. Consequently,
the number of clusters sharing the same ancestor is limited. Of course, this heuristic
strategy leads to the loss of the completeness guarantee; in particular, the exact p-
values introduced in Section 10.3.5.2 cannot be determined anymore. But if we select
the most “promising” children in each step, the method is likely to find a substan-
tial fraction of the most significant solutions. This idea is related to the concept of
beam search [110]. We propose the following procedure for the selection of children,
among all nodes v that produce children U ∪ {v} of the current cluster U, we choose
the k nodes with the largest degree within U ∪ {v} (leading to child clusters with the
largest density). The motivation behind this is that they are most likely to have dense
descendants. Among nodes with equal degree, we prefer those with the largest indices
because according to our reduction scheme, they are the last to be removed. In other
words, we use an ordering of candidate nodes that is reverse to the ordering defined
for the reduction scheme (Definition 10.8).

10.4 DENSE CLUSTER ENUMERATION IN HIGHER-ORDER
ASSOCIATION DATA

So far, we have assumed undirected weighted networks as input data for the dense
cluster enumeration approach. Figure 10.7 illustrates generalizations of this setting
that are addressed in this section [3,4]. While the basic network case deals with
symmetric weight matrices and extracts submatrix patterns of large average weight, a
similar task can be defined for asymmetric two-way weight matrices with a different
set of entities in each dimension. It can be considered as an instance of bicluster mining
approaches that focus on the strength or density of associations between entity subsets
(see Section 10.2.4, Refs. 49,65,67,111). Beyond that, we look at higher-order input
data, which can be represented as n-way weight arrays, also known as tensors. A
higher-order or n-way cluster is then a subtensor described by specifying a non-
empty subset of indices in each dimension. From a graph-theoretic point of view, an
n-way tensor corresponds to a weighted n-partite hypergraph, where each hyperedge
connects n nodes, exactly one node from each partition. If different dimensions of the
tensor share the same entity set, the corresponding hypergraph has less partitions, and
inherent symmetry relationships can exist. After introducing the problem of n-way
dense cluster enumeration and a generalized reverse search algorithm that solves it,
we consider its extension to symmetric scenarios.

www.it-ebooks.info

http://www.it-ebooks.info/

288 DENSITY-BASED SET ENUMERATION IN STRUCTURED DATA

Higher-Order mining Bicluster MiningNetwork Mining

Data Multiway
weight tensor:

Two-way
weight matrix:

Symmetric
weight matrix:

W : V × V → , V1 × V2 → V1 × ... × Vn →
W(u, υ) = W(υ, u)

Cluster
definition

U (U1 ,...,Un)(U1,U2)
U ⊂ V Ui ⊂ Vi Ui ⊂ Vi

Array
representation

V

V

V

...

...

U
U

U

V2

V3
V2

V2 V3

V2

U2

U2

U2

U1

U1

U3

U3

U2

U1

U1

V1

V1

V1 V1

Graph
representation

FIGURE 10.7 Generalization of cluster mining in networks to two-way and higher-order
data. For visualization purposes, the sets U and Ui are shown as coherent blocks; however, they
can be arbitrary subsets.

10.4.1 Motivation

A popular approach to investigate higher-order data is relational data mining (see
Section 10.2.6). There, the focus is on binary-valued multiway relationships, also
called n-ary relations. They can be represented as an n-way tensor where an entry
is 1 if the corresponding n-way relationship has been observed, and 0 otherwise. In
that framework, relational mining is equivalent to extracting subtensors (clusters) that
contain only 1-entries; different clusters may overlap. In the relational data mining
terminology, these patterns are called n-sets. Our approach to higher-order cluster
detection extends the definition of n-set to numerical data, that means, the tensor may
contain arbitrary weights. We consider a cluster or n-set pattern as a solution if the
average value of the entries in the corresponding subtensor exceeds a given threshold;
in particular, 0-entries are tolerated to a certain extent, whereas relational mining
approaches require that all entries are 1. The generalization can be advantageous

www.it-ebooks.info

http://www.it-ebooks.info/

DENSE CLUSTER ENUMERATION IN HIGHER-ORDER ASSOCIATION DATA 289

for detecting associations between sets of instances in data with missing or noisy
observations. The crucial difference to previous methods for cluster discovery in
multiway weight tensors (see Section 10.2.6) lies in the quality criterion for cluster
patterns, which considers the average association strength within a cluster instead of
the homogeneity of weights. Furthermore, overlapping clusters are detected, whereas
many previous techniques are based on partitioning. The approach is generic in the
sense that it can in principle deal with tensor data of an arbitrary number of dimensions,
binary values or real weights, and partial symmetries.

10.4.2 Problem Definition

Our goal is to extract all dense clusters from a multidimensional data array (tensor). To
formalize the problem, we first introduce some notation, generalizing the definitions
from Section 10.3.1. Let n > 0 be the number of dimensions in the given data array
(also called ways or modes). Then, we write the input in the following form:

W = (wk1,...,kn)ki∈Vi, i=1,...,n (10.15)

The index ki is used to access the ith dimension and takes values from a finite index
set Vi = {1, . . . Ii}, where Ii is a natural number that can differ from dimension to
dimension. Vi is also called the instance set or range for the ith dimension; the
cardinality of the set is denoted by |Vi| and equals Ii. The elements (entries) of W are
real-valued weights indicating the association strength between the n instances. For
convenience, we again normalize the array such that

wk1,...,kn ≤ 1 ∀ ki ∈ Vi, i = 1, . . . , n . (10.16)

An n-way cluster U is defined by specifying for each dimension a nonempty subset
of the corresponding index set,

U = (U1, . . . , Un), Ui ⊂ Vi, |Ui| ≥ 1 ∀i = 1, . . . , n . (10.17)

The induced subarray is given by

W |U = (wk1,...,kn)ki∈Ui, i=1,...,n. (10.18)

Let us define the cardinality of a cluster as the sum of the cardinalities of the index
subsets in all n dimensions, that is, the total number of instances included in the
cluster:

card(U) =
n∑

i=1

|Ui|. (10.19)

This is not to be confused with the cluster size, which corresponds to the number of
entries in the induced subarray,

size(U) =
n∏

i=1

|Ui|. (10.20)

www.it-ebooks.info

http://www.it-ebooks.info/

290 DENSITY-BASED SET ENUMERATION IN STRUCTURED DATA

Our cluster definition implies that size(U) ≥ 1. The density of the cluster U is defined
as the average value of the weight entries in the induced subarray.

Definition 10.20 (Cluster Density) The density of an n-way cluster U with respect
to the n-dimensional weight array W is given by

ρW (U) = 1

size(U)

∑
ki∈Ui

wk1,...,kn . (10.21)

Due to the normalization of the data array W , the largest possible cluster density is
1. Using the above definitions, we state the problem of dense cluster enumeration as
follows.

Definition 10.21 (Higher-Order Dense Cluster Enumeration) Given a weight-
normalized n-dimensional data array W and a minimum density threshold θ with
0 < θ ≤ 1, find all n-way clusters U such that ρW (U) ≥ θ.

Note that different clusters are allowed to overlap. For θ = 1, the problem is equivalent
to n-set or hyperclique enumeration [72–75].

10.4.3 Enumeration Approach

In order to solve the dense cluster enumeration task in higher-order data, we again
use a reverse search algorithm, extending the network-based enumeration strategy
from Section 10.3. For that purpose, we first introduce an index mapping scheme that
facilitates the algorithmic description; then, we specify the level-wise search space,
establish a reduction scheme, and present the overall search procedure. Finally, we
consider some implementation details and analyze the complexity of the method.

10.4.3.1 Global Index Representation
As defined in Equation 10.15, an n-way array is represented using dimension-specific
index sets V1, . . . , Vn; each of them consists of successive indices starting from 1.
Now we build a global index set across all dimensions:

V = {1, . . . ,

n∑
i=1

|Vi|} . (10.22)

The conversion of an element v ∈ Vi to a global index is carried out according to the
following scheme:

C(v, i) = v +
i−1∑
j=1

|Vj| (10.23)

www.it-ebooks.info

http://www.it-ebooks.info/

DENSE CLUSTER ENUMERATION IN HIGHER-ORDER ASSOCIATION DATA 291

For i = 1, the summation term is zero, that is, C(v, 1) = v. Accordingly, we determine
the array dimension to which an element v ∈ V belongs as

dim(v) = max{i = 1, . . . , n :
i−1∑
j=1

|Vj| < v} . (10.24)

Then a cluster U = (U1, . . . , Un) can also be represented as a subset of V,

U =
n⋃

i=1

⋃
u∈Ui

{C(u, i)} . (10.25)

Note that U and U are alternative representations of a uniquely determined cluster
and can easily be transformed into each other. In the following, we will use the
representation that is more convenient in the particular context.

10.4.3.2 Search Space
The search space for the dense cluster enumeration problem is the set of all possible
n-way clusters. As in the module enumeration setting, it can be organized in the form
of a lattice, that is, in multiple levels. Here, the root level consists of all trivial clusters.

Definition 10.22 (Trivial Cluster) A cluster U = (U1, . . . , Un) is called trivial
if |Ui| = 1 for i = 1, . . . , n. Consequently, size(U) = 1 and card(U) = n for each
trivial cluster U.

A trivial cluster corresponds to exactly one entry of the multidimensional array. By
adding exactly one index to one particular set Ui, we obtain the clusters on the sub-
sequent level of the search lattice. In this way, the clusters are iteratively expanded
from level to level; at each level, the cluster index set U grows by one element and the
cluster cardinality increases by 1. To traverse the search lattice in an efficient way,
we define a search tree for each trivial cluster such that the resulting set of trees is a
spanning forest of the search space. The next section describes a reduction scheme to
construct search trees that allow for effective pruning based on the density criterion.

10.4.3.3 Reduction Scheme
The core component of a reverse search algorithm is the definition of a reduction
scheme (i.e., the rule for parent construction) that guarantees antimonotonicity and
completeness of the search. For the reduction of dense multiway clusters, we extend
the Definition 10.8. First, we define the degree of an instance in a multidimensional
array.

Definition 10.23 (Degree) Given a cluster U, the degree of v ∈ Uj with respect to
U is defined as

degU (v, j) =
∑

ki∈Ui,i /= j

wk1,...,kj−1,v,kj+1,...,kn . (10.26)

www.it-ebooks.info

http://www.it-ebooks.info/

292 DENSITY-BASED SET ENUMERATION IN STRUCTURED DATA

U1

U3
U2

V

FIGURE 10.8 Visualization of a three-way cluster. In each reduction step, we remove one
slice of the cluster, specified by a particular index element v.

In the global index representation, there is no ambiguity for instances of different
dimensions, so we simply write degU(v) for v ∈ U. With that, we specify the following
reduction scheme.

Definition 10.24 (Reduction Scheme) Let U be a cluster. If v is the instance with
the smallest index among the minimum degree elements in U, the parent of U is given
by U \ {v}.

Reducing the cluster U by one instance corresponds to removing a slice of the respec-
tive subarray, namely all entries involving the specified instance (see Fig. 10.8). Here,
we select an instance such that the sum of the entries in the corresponding slice (i.e.,
the degree) is minimal. It remains to show that this parent–child relationship satisfies
the cluster reachability and antimonotonicity requirements.

Lemma 10.8 Let U be a nontrivial cluster and ρW (U) > 0. Then, for all v ∈ U with
minimum degree, that is,

v ∈ argmin
u∈U

degU(u),

the following properties hold: size(U \ {v}) ≥ 1 ∧ ρW (U \ {v}) ≥ ρW (U).

The proof is straightforward (see Ref. 4). The first statement of the lemma refers to
the cluster reachability; it ensures that, by iterative application of the reduction scheme
in Definition 10.24, any cluster with positive density shrinks to a trivial cluster, that is,
a root of the search space; that means, degenerate constructs do not occur where some
dimensions-specific instance sets are empty. The second statement implies antimono-
tonicity, that is, a parent cluster is at least as dense as any child cluster.6 Note that

6However, the parent is not necessarily the densest direct subcluster of a given child cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

DENSE CLUSTER ENUMERATION IN HIGHER-ORDER ASSOCIATION DATA 293

TABLE 10.3 Dense Cluster Enumeration for an
n-Dimensional Data Array with Global Index Set V
(and Corresponding Mapping C); θ Denotes the
Minimum Density Threshold

1: DCE (V, C, W, θ) :
2: for each (k1, . . . , kn) with wk1,...,kn

≥ θ do

3: DCE Rec(V, W, θ,

n⋃
i=1

{C(ki, i)})

4: end for

1: DCE Rec (V, W, θ,U) :
2: for each v ∈ V \ U do
3: if ρW (U ∪ {v}) ≥ θ and U ∪ {v} is child of U then
4: DCE Rec (V, W, θ,U ∪ {v})
5: end if
6: end for
7: output U

these properties hold for any minimum degree instance; however, to avoid duplicate
investigation of subspaces, each cluster should have a unique parent, that is, the
reduction scheme has to specify which of the minimum degree instances is selected
(in our case, the instance with the smallest global index).

10.4.3.4 Search Algorithm
The defined reduction scheme directly suggests the algorithm in Table 10.3. The first
step consists in finding all entries in the array that are greater than or equal to θ.
These trivial clusters are then further expanded by a depth-first strategy producing
descendants of increasing cardinality and pruning low-density branches, in analogy
to the network cluster enumeration (Table 10.1). To be able to deal with an arbitrary
number of dimensions, the input is conveniently represented in a sparse format. For
each nonzero entry, we create a data object that contains the n-dimensional index
vector and the corresponding value. To facilitate the access to entries during the
search, we generate for each v ∈ V a list of pointers to the objects containing v

(also called adjacency list of v). For efficient checking of the density and the child
conditions during the search, we maintain an array of length |V| for storing degree
values, equivalently to the network case (Section 10.3.3). One of the rules for quick
parent checking has to be adjusted to the higher-order setting, which is as follows.

Lemma 10.9 Given a cluster U in the data array W , let u∗ ∈ U be the previously
added instance and v ∈ V \ U. Let gU(u∗, v) be the number of elements that the u∗-
slice gains by adding v to the cluster U. If degU∪{v}(v) > degU(u∗) + gU(u∗, v) then
U ∪ {v} is not a child of U.

Here, the notion of v-slice simply refers to the set of entries in the cluster subarray
that include the instance v (see Fig. 10.8).

www.it-ebooks.info

http://www.it-ebooks.info/

294 DENSITY-BASED SET ENUMERATION IN STRUCTURED DATA

The complexity of the algorithm is analyzed in a similar way as for the network case
described in Section 10.3.4. Depending on the application at hand, either a sparse input
representation as described above or a full multidimensional array representation with
constant-time access to specific entries is more suitable. Irrespective of the chosen
data representation, the following theorem holds [4].

Theorem 10.2 Using the reverse search algorithm for dense cluster enumeration
in a given n-way tensor, the delay between two consecutive solutions is linear in the
size of the data structure that represents the input.

To facilitate a carefully directed analysis of result patterns, we can employ similar
techniques as proposed for cluster enumeration in networks (Section 10.3). This in-
cludes for instance output filtering steps such as checks for local maximality and
minimum degree thresholds. Relative degree values are equivalent to the average of
the entries in the corresponding slice of the cluster (i.e., the density of the slice);
constraining them ensures to a certain extent the balance of weights across the whole
cluster. Such balance constraints can also be defined at finer granularity levels, that is,
lower-order slices or fibers of the cluster. Furthermore, exact probabilities for rank-
ing and pruning rules based on isolated instances can be directly generalized from
the network case; equivalently, external constraints and branching restrictions can be
handled (see Ref. 4 for details).

10.4.3.5 Symmetry Adaptations
The previous subsections considered the search for multiway cluster patterns with an
individual subset specification for each dimension. However, multiway data might
represent homogeneous or partially homogeneous associations, that is, different di-
mensions of the array can refer to the same set of entities, sometimes making a
symmetric cluster analysis more appealing [4]. Here, we briefly discuss how to deal
with full or partial symmetry scenarios. In particular, this extension of the higher-
order cluster enumeration formalism restores the dense subgraph enumeration task
from Section 10.3 as a special case. An example for a partially symmetric dataset is
a set of weighted undirected networks that share the same set of nodes; they can be
stored in a three-dimensional array where an entry wijk corresponds to the weight of
the edge between the ith and the jth node in the kth network and the entries wijk and
wjik are equivalent (we say that the array is symmetric with respect to the first two
dimensions). This has several consequences for the cluster enumeration. First, equiv-
alence of entries must be respected when computing the cluster density; in particular,
it is sufficient to store only one of them. Second, different dimensions of the input data
might share the same set of instances (identified by their global indices); in that case,
a cluster pattern defines a common instance subset for these dimensions instead of
using separate subsets in each dimension. So, in the above example, a cluster would
simply specify a subset of network nodes and a subset of networks, corresponding
to node interaction patterns across several networks. Apart from that, various combi-
nations of symmetry relationships in the data or requirements for the cluster can be
handled simultaneously.

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 295

10.5 DISCUSSION

This chapter presented a general framework for the systematic extraction of dense
patterns from simple or higher-order edge-weighted network data. It extends con-
ventional relational set mining approaches [72,74,75] and clique-related network
analysis [13,15,17]. The proposed reverse search algorithm allows for an effective,
antimonotonicity-based pruning of the search space without missing any solutions;
the complexity of the delay between two consecutive solutions is in the order of the
input size. This property allows to apply it in cases where straightforward set enu-
meration algorithms are infeasible [4]. However, for large datasets or low density
thresholds, the number of solutions can be prohibitive, making the computation slow
in spite of the favorable runtime per solution.

There are several remedies for this problem. The first possibility is to maintain
the enumerative search, but add further constraints based on additional criteria, prior
knowledge, or external data [1], as described in Section 10.3.9. If relevant subsets
are prespecified for some dimensions (for instance, windows of consecutive time
intervals), reverse search with respect to the other dimensions can be performed for
each of these subsets individually. On the other hand, one can use the reverse search
strategy and additionally apply heuristic criteria or sampling techniques to control
the number, overlap, and relevance of solutions; this allows to directly trade off the
runtime and the completeness of the solution set, as exemplified in Section 10.3.9 with
a simple branching heuristic [4]; similarly, heuristic pruning rules could be specified
by appropriate thresholding of (relative) degree values. Even if it is not used for
exhaustive exploration, the definition of the antimonotonic search space has a value
by itself, as valid solutions are visited with short delay.

Finally, instead of applying the method to the whole dataset at once, it can be com-
bined with different strategies of prepartitioning or preaggregation of the data [8,82].
Also, more effective exploitation of minimum size or connectivity constraints is con-
ceivable. Furthermore, the reverse search strategy is compatible with distributed com-
putation, and its efficiency can be enhanced by adapting data structures and pruning
techniques to the specific task at hand.

REFERENCES

1. E. Georgii, S. Dietmann, T. Uno, P. Pagel, K. Tsuda, Enumeration of condition-dependent
dense modules in protein interaction networks. Bioinformatics 25(7), 933–940 (2009).

2. E.A. Akkoyunlu, The enumeration of maximal cliques of large graphs. SIAM J. Comput.
2(1), 1–6 (1973).

3. E. Georgii, K. Tsuda, B. Schölkopf, Multi-way set enumeration in real-valued tensors,
in DMMT ’09: Proceedings of the 2nd Workshop on Data Mining using Matrices and
Tensors, ACM, pp. 32–41 (Article No. 4), 2009.

4. E. Georgii, K. Tsuda, B. Schölkopf, Multi-way set enumeration in weight tensors. Mach.
Learn. 82, 123–155 (2011).

www.it-ebooks.info

http://www.it-ebooks.info/

296 DENSITY-BASED SET ENUMERATION IN STRUCTURED DATA

5. X. Yan, J. Han, gSpan: graph-based substructure pattern mining, in ICDM ’02: Proceed-
ings of the 2nd IEEE International Conference on Data Mining, IEEE Computer Society,
pp. 721–724, 2002.

6. M. Kuramochi, G. Karypis, An efficient algorithm for discovering frequent subgraphs.
IEEE Trans. Knowl. Data Eng. 16(9), 1038–1051 (2004).

7. S. Kramer, L. De Raedt, C. Helma, Molecular feature mining in HIV data, in KDD ’01:
Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM, pp. 136–143, 2001.

8. H. Hu, X. Yan, Y. Huang, J. Han, X.J. Zhou, Mining coherent dense subgraphs across
massive biological networks for functional discovery. Bioinformatics 21(Suppl. 1), i213–
i221 (2005).

9. X. Yan, X.J. Zhou, J. Han, Mining closed relational graphs with connectivity constraints,
in KDD ’05: Proceedings of the 11th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, ACM, pp. 324–333, 2005.

10. M. Kuramochi, G. Karypis, Finding frequent patterns in a large sparse graph. Data Min.
Knowl. Discov. 11(3), 243–271 (2005).

11. R.M. Karp, Reducibility among combinatorial problems, in Complexity of Computer
Computations, Plenum Press, pp. 85–103, 1972.

12. V. Spirin, L.A. Mirny, Protein complexes and functional modules in molecular networks.
Proc. Natl. Acad. Sci. U.S.A. 100(21), 12123–12128 (2003).

13. G. Palla, I. Derenyi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure
of complex networks in nature and society. Nature 435(7043), 814–818 (2005).

14. J. Pei, D. Jiang, A. Zhang, Mining cross-graph quasi-cliques in gene expression and
protein interaction data, in ICDE ’05: Proceedings of the 21st International Conference
on Data Engineering, IEEE Computer Society, pp. 353–354, 2005.

15. Z. Zeng, J. Wang, L. Zhou, G. Karypis, Coherent closed quasi-clique discovery from large
dense graph databases, in KDD ’06: Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, pp. 797–802, 2006.

16. G. Liu, L. Wong, Effective pruning techniques for mining quasi-cliques, in ECML PKDD
’08: Proceedings of the European Conference on Machine Learning and Knowledge
Discovery in Databases – Part II, Springer, pp. 33–49, 2008.

17. D. Jiang, J. Pei, Mining frequent cross-graph quasi-cliques. ACM Trans. Knowl. Discov.
Data 2(4), 1–42 (2009).

18. T. Uno, An efficient algorithm for enumerating pseudo cliques, in Algorithms and Com-
putation, Proceedings of the 18th International Symposium (ISAAC 2007), pp. 402–414,
2007.

19. Y. Asahiro, R. Hassin, K. Iwama, Complexity of finding dense subgraphs. Discrete Appl.
Math. 121(1–3), 15–26 (2002).

20. Y. Asahiro, K. Iwama, H. Tamaki, T. Tokuyama, Greedily finding a dense subgraph. J.
Algorithms 34(2), 203–221 (2000).

21. M. Charikar, Greedy approximation algorithms for finding dense components in a graph,
in APPROX ’00: Proceedings of the 3rd International Workshop on Approximation Al-
gorithms for Combinatorial Optimization, Springer, pp. 84–95, 2000.

22. U. Feige, G. Kortsarz, D. Peleg, The dense k-subgraph problem. Algorithmica 29(3),
59–78 (2001).

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 297

23. G.F. Georgakopoulos, K. Politopoulos, MAX-DENSITY revisited: a generalization and
a more efficient algorithm. Comput. J. 50(3), 348–356 (2007).

24. L. Everett, L.S. Wang, S. Hannenhalli, Dense subgraph computation via stochastic search:
application to detect transcriptional modules. Bioinformatics 22(14), e117–e123 (2006).

25. G.D. Bader, C.W. Hogue, An automated method for finding molecular complexes in large
protein interaction networks. BMC Bioinform. 4, 2 (2003).

26. M.T. Dittrich, G.W. Klau, A. Rosenwald, T. Dandekar, T.Müller, Identifying functional
modules in protein–protein interaction networks: an integrated exact approach. Bioinfor-
matics 24(13), i223–i231 (2008).

27. C. Faloutsos, K.S. McCurley, A. Tomkins, Fast discovery of connection subgraphs, in
KDD ’04: Proceedings of the 10th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, ACM, pp. 118–127, 2004.

28. S.E. Schaeffer, Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007).

29. B.W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs. Bell
Syst. Tech. J. 49(1), 291–307 (1970).

30. A. Clauset, M.E.J. Newman, C. Moore, Finding community structure in very large net-
works. Phys. Rev. E 70(6), 066111 (2004).

31. J. Hopcroft, O. Khan, B. Kulis, B. Selman, Natural communities in large linked net-
works, in KDD ’03: Proceedings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM, pp. 541–546, 2003.

32. A.W. Rives, T. Galitski, Modular organization of cellular networks. Proc. Natl. Acad. Sci.
U.S.A. 100(3), 1128–1133 (2003).

33. T. Yamada, M. Kanehisa, S. Goto, Extraction of phylogenetic network modules from the
metabolic network. BMC Bioinform. 7, 130 (2006).

34. E. Hartuv, R. Shamir, A clustering algorithm based on graph connectivity. Inform. Process.
Lett. 76, 175–181 (1999).

35. M. Girvan, M.E. Newman, Community structure in social and biological networks. Proc.
Natl. Acad. Sci. U.S.A. 99(12), 7821–7826 (2002).

36. J. Chen, B. Yuan, Detecting functional modules in the yeast protein–protein interaction
network. Bioinformatics 22(18), 2283–2290 (2006).

37. F. Luo, Y. Yang, C.-F. Chen, R. Chang, J. Zhou, R.H. Scheuermann, Modular organization
of protein interaction networks. Bioinformatics 23(2), 207–214 (2007).

38. J.W. Pinney, D.R. Westhead, Betweenness-based decomposition methods for social and
biological networks, in Interdisciplinary Statistics and Bioinformatics, Leeds University
Press, Leeds, pp. 87–90, 2006.

39. M.E. Newman, Modularity and community structure in networks. Proc. Natl. Acad. Sci.
U.S.A 103(23), 8577–8582 (2006).

40. G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for irregular graphs. J.
Parallel Distrib. Comput. 48, 96–129 (1998).

41. D. Medini, A. Covacci, C. Donati, Protein homology network families reveal step-wise
diversification of type III and type IV secretion systems. PLoS Comput. Biol. 2(12) (2006).

42. U. von Luxburg, A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007).

43. S. van Dongen, Graph Clustering by Flow Simulation, PhD thesis, University of Utrecht,
2000.

www.it-ebooks.info

http://www.it-ebooks.info/

298 DENSITY-BASED SET ENUMERATION IN STRUCTURED DATA

44. A.J. Enright, S. van Dongen, C.A. Ouzounis, An efficient algorithm for large-scale de-
tection of protein families. Nucleic Acids Res. 30(7), 1575–1584 (2002).

45. E. Segal, H. Wang, D. Koller, Discovering molecular pathways from protein interaction
and gene expression data. Bioinformatics 19(Suppl. 1), i264–i271 (2003).

46. W. Chu, Z. Ghahramani, R. Krause, D.L. Wild, Identifying protein complexes in high-
throughput protein interaction screens using an infinite latent feature model, in Proceed-
ings of the Pacific Symposium on Biocomputing, pp. 231–242, 2006.

47. J.A. Parkkinen, S. Kaski, Searching for functional gene modules with interaction com-
ponent models. BMC Syst. Biol. 4, 4 (2010).

48. D. Hanisch, A. Zien, R. Zimmer, T. Lengauer, Co-clustering of biological networks and
gene expression data. Bioinformatics 18(Suppl. 1), S145–S154 (2002).

49. A. Tanay, R. Sharan, M. Kupiec, R. Shamir, Revealing modularity and organization in
the yeast molecular network by integrated analysis of highly heterogeneous genomewide
data. Proc. Natl. Acad. Sci. U.S.A. 101(9), 2981–2986 (2004).

50. I. Ulitsky, R. Shamir, Identification of functional modules using network topology and
high-throughput data. BMC Syst. Biol. 1, 8 (2007).

51. I. Ulitsky, R. Shamir, Identifying functional modules using expression profiles and
confidence-scored protein interactions. Bioinformatics 25(9), 1158–1164 (2009).

52. T. Ideker, O. Ozier, B. Schwikowski, A.F. Siegel, Discovering regulatory and signalling
circuits in molecular interaction networks. Bioinformatics 18(Suppl. 1), S233–S240
(2002).

53. Y. Huang, H. Li, H. Hu, X. Yan, M.S. Waterman, H. Huang, X.J. Zhou, Systematic
discovery of functional modules and context-specific functional annotation of human
genome. Bioinformatics 23(13), i222–i229 (2007).

54. X. Yan, M.R. Mehan, Y. Huang, M.S. Waterman, P.S. Yu, X.J. Zhou, A graph-based
approach to systematically reconstruct human transcriptional regulatory modules. Bioin-
formatics 23(13), i577–i586 (2007).

55. S.C. Madeira, A.L. Oliveira, Biclustering algorithms for biological data analysis: A sur-
vey. IEEE/ACM Trans. Comput. Biol. Bioinform. 1(1), 24–45 (2004).

56. A. Prelić, S. Bleuler, P. Zimmermann, A. Wille, P. Bühlmann, W. Gruissem, L. Hennig,
L. Thiele, E. Zitzler, A systematic comparison and evaluation of biclustering methods for
gene expression data. Bioinformatics 22(9), 1122–1129 (2006).

57. A. Tanay, R. Sharan, R. Shamir, Biclustering algorithms: a survey, in Handbook of Com-
putational Molecular Biology, Chapman and Hall, 2005.

58. G. Li, Q. Ma, H. Tang, A.H. Paterson, Y. Xu, QUBIC: a qualitative biclustering algorithm
for analyses of gene expression data. Nucl. Acids Res. 37(15), e101 (2009).

59. I. Van Mechelen, H.H. Bock, P. De Boeck, Two-mode clustering methods: a structured
overview. Stat. Methods Med. Res. 13(5), 363–394 (2004).

60. D. Jiang, C. Tang, A. Zhang, Cluster analysis for gene expression data: a survey. IEEE
Trans. Knowl. Data Eng. 16(11), 1370–1386 (2004).

61. I.S. Dhillon, Co-clustering documents and words using bipartite spectral graph partition-
ing, in KDD ’01: Proceedings of the 7th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM, pp. 269–274, 2001.

62. Y. Kluger, R. Basri, J.T. Chang, M. Gerstein, Spectral biclustering of microarray data:
coclustering genes and conditions. Genome Res. 13(4), 703–716 (2003).

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 299

63. L. Lazzeroni, A. Owen, Plaid models for gene expression data. Stat. Sin. 12(1), 61–86
(2002).

64. P. Wang, C. Domeniconi, K.B. Laskey, Latent dirichlet bayesian co-clustering, in ECML
PKDD ’09: Proceedings of the European Conference on Machine Learning and Knowl-
edge Discovery in Databases, Springer, pp. 522–537, 2009.

65. A. Tanay, R. Sharan, R. Shamir, Discovering statistically significant biclusters in gene
expression data. Bioinformatics 18(Suppl. 1), S136–S144 (2002).

66. K. Sim, J. Li, V. Gopalkrishnan, G. Liu, Mining maximal quasi-bicliques to co-cluster
stocks and financial ratios for value investment, in ICDM ’06: Proceedings of the 6th
International Conference on Data Mining, pp. 1059–1063, 2006.

67. C. Yan, J.G. Burleigh, O. Eulenstein, Identifying optimal incomplete phyloge-
netic data sets from sequence databases. Mol. Phylogenet. Evol. 35(3), 528–535
(2005).

68. J. Besson, C. Robardet, L. De Raedt, J.-F. Boulicaut, Mining bi-sets in numerical data, in
KDID ’06: Knowledge Discovery in Inductive Databases, 5th International Workshop,
Vol. 4747, Lecture Notes in Computer Science, Springer, pp. 11–23, 2006.

69. R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large databases, in
VLDB ’94: Proceedings of the 20th International Conference on Very Large Data Bases,
Morgan Kaufmann, pp. 487–499, 1994.

70. C. Creighton, S. Hanash, Mining gene expression databases for association rules. Bioin-
formatics 19(1), 79–86 (2003).

71. T. Uno, M. Kiyomi, H. Arimura, LCM ver. 2: efficient mining algorithms for fre-
quent/closed/maximal itemsets, in FIMI ’04, Proceedings of the IEEE ICDM Workshop
on Frequent Itemset Mining Implementations, 2004.

72. L. Cerf, J. Besson, C. Robardet, J.-F. Boulicaut, Data Peeler: contraint-based closed
pattern mining in n-ary relations, in SDM ’08: Proceedings of the 8th SIAM International
Conference on Data Mining, pp. 37–48, 2008.

73. L. Cerf, J. Besson, C. Robardet, J.-F. Boulicaut, Closed patterns meet n-ary relations.
ACM Trans. Knowl. Discov. Data 3(1), 1–36 (2009).

74. R. Jäschke, A. Hotho, C. Schmitz, B. Ganter, G. Stumme, TRIAS: an algorithm for mining
iceberg tri-lattices, in ICDM ’06: Proceedings of the 6th International Conference on Data
Mining, IEEE Computer Society, pp. 907–911, 2006.

75. L. Ji, K.-L. Tan, A.K.H, Tung, Mining frequent closed cubes in 3D datasets, in VLDB
’06: Proceedings of the 32nd International Conference on Very Large Data Bases, VLDB
Endowment, pp. 811–822, 2006.

76. T.G. Kolda, B.W. Bader, J.P. Kenny, Higher-order web link analysis using multilinear
algebra, in ICDM ’05: Proceedings of the 5th IEEE International Conference on Data
Mining, IEEE Computer Society, pp. 242–249, 2005.

77. E. Acar, S. Çamtepe, B. Yener, Collective sampling and analysis of high order tensors
for chatroom communications, in Intelligence and Security Informatics, Springer, pp.
213–224, 2006.

78. C.F. Beckmann, S.M. Smith, Tensorial extensions of independent component analysis
for multisubject FMRI analysis. Neuroimage 25(1), 294–311 (2005).

79. E. Acar, C. Aykut-Bingol, H. Bingol, R. Bro, B. Yener, Multiway analysis of epilepsy
tensors. Bioinformatics 23(13), i10–i18 (2007).

www.it-ebooks.info

http://www.it-ebooks.info/

300 DENSITY-BASED SET ENUMERATION IN STRUCTURED DATA

80. L. Zhao, M.J. Zaki, TRICLUSTER: an effective algorithm for mining coherent clus-
ters in 3D microarray data, in SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, ACM, pp. 694–705, 2005.

81. S.E. Baranzini, P. Mousavi, J. Rio, S.J. Caillier, A. Stillman, P. Villoslada, M.M. Wyatt,
M. Comabella, L.D. Greller, R. Somogyi, X. Montalban, J.R. Oksenberg, Transcription-
based prediction of response to IFNβ using supervised computational methods. PLoS
Biol. 3(1), e2 (2004).

82. T.G. Kolda, B.W. Bader, Tensor decompositions and applications. Technical Report
SAND2007-6702, Sandia National Laboratories, Albuquerque, NM and Livermore, CA,
November 2007.

83. T.G. Kolda, J.Sun, Scalable tensor decompositions for multi-aspect data mining, in ICDM,
2008.

84. A. Banerjee, S. Basu, S. Merugu, Multi-way clustering on relation graphs, in SDM ’07:
Proceedings of the 7th SIAM International Conference on Data Mining, 2007.

85. S. Jegelka, S. Sra, A. Banerjee, Approximation algorithms for tensor clustering, in Algo-
rithmic Learning Theory, pp. 368–383, 2009.

86. C. Kemp, J.B. Tenenbaum, T.L. Griffiths, T. Yamada, N. Ueda, Learning systems of
concepts with an infinite relational model, in AAAI ’06: Proceedings of the 21st National
Conference on Artificial Intelligence, AAAI Press, pp. 381–388, 2006.

87. Y.-R. Lin, J. Sun, P. Castro, R. Konuru, H. Sundaram, A. Kelliher, MetaFac: community
discovery via relational hypergraph factorization, in KDD ’09: Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
ACM, pp. 527–536, 2009.

88. S. Džeroski, Multi-relational data mining: an introduction. SIGKDD Explor. Newsl. 5(1),
1–16 (2003).

89. D. Avis, K. Fukuda, Reverse search for enumeration. Discrete Appl. Math. 65, 21–46
(1996).

90. R. Rymon, Search through systematic set enumeration, in Proceedings of the 3rd In-
ternational Conference on Principles of Knowledge Representation and Reasoning,
pp. 539–550, 1992.

91. M.J. Zaki, S. Parthasarathy, M. Ogihara, W. Li, New algorithms for fast discovery of asso-
ciation rules, in KDD ’97: Proceedings of the 3rd International Conference on Knowledge
Discovery and Data Mining, AAAI Press, pp. 283–286, 1997.

92. R.J. Bayardo, Jr., Efficiently mining long patterns from databases, in SIGMOD ’98:
Proceedings of the 1998 ACM SIGMOD International Conference on Management of
Data, ACM, pp. 85–93, 1998.

93. F. Zhu, X. Yan, J. Han, P.S. Yu, gPrune: a constraint pushing framework for graph pattern
mining, in PAKDD ’07: Proceedings of the 11th Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining, Springer, pp. 388–400, 2007.

94. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 3rd edn.,
The MIT Press, 2009.

95. L.A. Goldberg, Efficient algorithms for listing unlabeled graphs. J. Algorithms 13(1),
128–143 (1992).

96. L.A. Goldberg, Polynomial space polynomial delay algorithms for listing families of
graphs, in STOC ’93: Proceedings of the 25th Annual ACM Symposium on Theory of
Computing, ACM, pp. 218–225, 1993.

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 301

97. J. Ramon, S. Nijssen, Polynomial-delay enumeration of monotonic graph classes. J.
Mach. Learn. Res. 10, 907–929 (2009).

98. S.-I. Nakano, T. Uno, Constant time generation of trees with specified diameter, in Graph-
Theoretic Concepts in Computer Science, 30th International Workshop, Vol. 3353, Lec-
ture Notes in Computer Science, Springer, pp. 33–45, 2004.

99. D. Gunopulos, H. Mannila, S. Saluja, Discovering all most specific sentences by ran-
domized algorithms, in ICDT ’97: Proceedings of the 6th International Conference on
Database Theory, Springer, pp. 215–229, 1997.

100. D.-I. Lin, Z.M. Kedem, Pincer search: a new algorithm for discovering the maximum
frequent sets, in EDBT ’98: Proceedings of the 6th International Conference on Extending
Database Technology, Springer, pp. 105–119, 1998.

101. K. Gouda, M.J. Zaki, Efficiently mining maximal frequent itemsets, in ICDM ’01: Pro-
ceedings of the IEEE International Conference on Data Mining, IEEE Computer Society,
pp. 163–170, 2001.

102. G. Bejerano, N. Friedman, N. Tishby, Efficient exact p-value computation for small
sample, sparse, and surprising categorical data. J. Comput. Biol. 11(5), 867–886 (2004).

103. M. Koyutürk, W. Szpankowski, A. Grama, Assessing significance of connectivity and
conservation in protein interaction networks. J. Comput. Biol. 14(6), 747–764 (2007).

104. H.C.M. Leung, Q. Xiang, S.M. Yiu, F.Y.L. Chin, Predicting protein complexes from PPI
data: a core-attachment approach. J. Comput. Biol. 16(2), 133–144 (2009).

105. R. Sharan, T. Ideker, B. Kelley, R. Shamir, R.M. Karp, Identification of protein complexes
by comparative analysis of yeast and bacterial protein interaction data. J. Comput. Biol.
12(6), 835–846 (2005).

106. M.E.J. Newman, M. Girvan, Finding and evaluating community structure in networks.
Phys. Rev. E 69(2), 026113 (2004).

107. C. Robardet, Constraint-based pattern mining in dynamic graphs, in ICDM ’09: Proceed-
ings of the 9th IEEE International Conference on Data Mining, IEEE Computer Society,
pp. 950–955, 2009.

108. J. Long, C. Hartman, ODES: an overlapping dense sub-graph algorithm. Bioinformatics
26(21), 2788–2789 (2010).

109. P. Dao, R. Colak, R. Salari, F. Moser, E. Davicioni, A. Schönhuth, M. Ester, Inferring can-
cer subnetwork markers using density-constrained biclustering. Bioinformatics 26(18),
i625–i631 (2010).

110. R. Bisiani, Beam search, in Encyclopedia of Articial Intelligence, Wiley, pp. 56–58, 1987.

111. N. Mishra, D. Ron, R. Swaminathan, A new conceptual clustering framework. Mach.
Learn. 56(1–3), 115–151 (2004).

www.it-ebooks.info

http://www.it-ebooks.info/

11
HYPONYM EXTRACTION EMPLOYING
A WEIGHTED GRAPH KERNEL

Tim vor der Brück

Hyponyms are required for many applications in the area of natural language process-
ing. Constructing a knowledge base with hyponyms manually requires a lot of work.
Thus, many approaches were developed to harvest them automatically. However, most
of them do not make use of deep semantic information but instead are based on sur-
face representations. In this paper, we present a purely semantic approach, which is
based on semantic networks. In the first step, hyponym hypotheses are extracted by
application of deep semantic patterns. In the second step, the extracted hypotheses are
validated employing a combined feature and graph kernel. Furthermore, a weighting
scheme is described to weight the edges of the compared graphs. The graph kernel
calculation is implemented in such a way that intermediate results are reused as much
as possible to allow for a reasonable runtime. The evaluation shows that the graph
kernel improves the evaluation results in contrast to a purely feature-based kernel. We
expect that by optimizing the combination parameters for graph and feature kernels,
a further improvement is possible.

11.1 INTRODUCTION

For many years, machine learning approaches were predominantly dealing with fea-
tures, that is, attribute value pairs [1]. Such an approach is attractive for several reasons.
First, feature values can easily be stored in a relational database. Second, operations
like the scalar product or the radial basis function for the similarity calculation of two
feature vectors are very efficient and can therefore be applied to mass-data. However,

Statistical and Machine Learning Approaches for Network Analysis, Edited by Matthias Dehmer and
Subhash C. Basak.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

303

www.it-ebooks.info

http://www.it-ebooks.info/

304 HYPONYM EXTRACTION EMPLOYING A WEIGHTED GRAPH KERNEL

with the feature-based approach it is not possible to express relationships between
variables. Furthermore, the original data is often directly represented as graph and has
no natural feature representation. A conversion of a graph representation into features
can seriously degrade precision and recall. Therefore, graph-based machine learning
methods (also called statistical relational learning) are becoming more and more pop-
ular in the past years. Often employed graph-based machine learning methods are
graph kernels, conditional random fields, and graph substructure learning.

A graph kernel is a similarity function for two graphs where the matrix of kernel val-
ues is positive-semidefinite and symmetric. Graph kernels are often used together with
support vector machines and nearest neighbor methods for classification of graphs.
Applications are image classification based on recognized structures [2], semantic
relation extraction from texts [3–7] or estimating certain properties (e.g.,toxicity) of
molecules [8].

Conditional random fields (CRFs) are employed to automatically label graph nodes
based on observations which are associated to the graph nodes. According to Laf-
ferty et al. [9], a conditional random field is a sequence modeling framework that
has all the advantages of maximum entropy models but also solves the label bias
problem in a principled way. The label bias problem is a problem often occurring
with maximum entropy models. It consists of the fact that the next chosen label can
become almost or even fully independent from the observation if the number of pos-
sible succeeding states is small. Conditional random fields are for instance employed
for part-of-speech taggers or named entity recognition. Named entity recognition is
the problem of identifying named entities in a text and assigning them a semantic type
such as organization, person, geographic object, and so on. In contrast to maximum
entropy models or hidden Markov models, conditional random fields can consider
long distance relationships. An example of such a relationship is that the same named
entity must always be assigned the same semantic type independent of its location
of occurrence [10]. Conditional random fields are also applied in the area of image
processing, for instance to label image pixels with their content type (e.g.,animal,
syk, water, and so on) [11].

A further popular task in graph-based machine learning is to identify often occur-
ring substructures in graphs. The approach of Cook and Holder [12] is based on the
minimum description length principle [13] . This principle states that the best theory
to describe a set of data is that theory which minimizes the description length of the
entire data set. Applied to subgraph discovery, it states that the optimal subgraph is
the one that compresses the entire graph the most. An example application of this
method is the prediction of the toxicity of molecules depending on their structure
activity representations (SARs) [14]. For that often occurring SAR, substructures are
extracted and compared with previously unseen molecules. An alternative method for
substructure learning that is used for relation extraction from dependency trees was
proposed by Snow et al. [15].

In this work, we are dealing with graph-based hyponym extraction. Hyponymy
extraction can be divided into kernel- and pattern-based approaches. A kernel-based
approach requires an annotated training set with dependency trees/DAGs and the
associated annotation (hyponym: yes or no). For a new training instance, first a word
pair is chosen for which the correct relation is required. The sentence is parsed by a

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED WORK 305

dependency parser and the tree structure of the new sentence is compared with the
tree structures of the annotated training set by means of a tree kernel. A support vector
machine then distributes the word pair in the correct relation class.

A pattern-based approach applies a collection of patterns to the dependency tree
of the sentence or directly to the surface structure. If a pattern is applicable, the
placeholder variables in the pattern can be instantiated and a new relation is created.

Our method combines the kernel-based approach with the pattern-based approach.
First, hyponymy hypotheses are created by applying a set of patterns. Instead of usual
surface type or syntactic patterns we employ truly semantic patterns in the form of
semantic networks. After the hyponymy hypotheses1 are extracted, they are validated
by a support vector machine [16] employing different kernels. We use a feature kernel
based on a radial basis function and two graph kernels, which compare the semantic
networks the hypotheses were extracted from.

This paper is organized as follows. First, we introduce related work in the area
of hyponym harvesting in Section 11.2, especially concerning the use of patterns
and kernel methods and discuss their drawbacks (see Section 11.3). Afterwards, we
describe the MultiNet semantic network formalism, which is the basis of our work in
Section 11.4. We then introduce support vector machines and optimization with kernel
functions (see Section 11.5). The architecture of our hyponym extraction system
is specified in Section 11.6. In Section 11.7, the graph kernel based on common
walks, which is the heart of our extraction method, is described in detail. We then
introduce several enhancements of this method (see Sections 11.8 and 11.9), which
were required to make the graph kernel suitable for our task and introduce a weighting
scheme. Afterwards, the linguistic feature kernel is described, which is employed in
addition to the graph kernel (see Section 11.10). Finally, we show our evaluation
results (see Section 11.11), give a conclusion and an outlook on possible further work
(see Section 11.12).

11.2 RELATED WORK

Hyponym harvesting has attracted a lot of interest. A large number of approaches
were developed so far. The approaches can be divided into pattern-based, kernel-
based, and document clustering-based [17] methods. A typical text pattern consists
of a sequence of words or sentence marks and two placeholder variables labeled
with hypernym or hyponym. An example of such a pattern is the Hearst pattern [18],
“hyponym and other hypernym.” If matched to the sentence The secretary and other
politicians criticized the law, the placeholder variable hyponym would be assigned to
secretary, the variable hypernym to politician, and therefore the correct hyponymy
relation “secretary is a hyponym of politician” is extracted. Such a surface-based
approach is easy to realize and also quite limited. It fails for instance if an additional
subclause is inserted, for example, The secretary and, according to our information, a
lot of other politicians criticized the law. In this case, the given surface pattern can no
longer be used for the extraction of the above-mentioned relation. This problem can

1Note that our approach is also used to extract instance-of relations.

www.it-ebooks.info

http://www.it-ebooks.info/

306 HYPONYM EXTRACTION EMPLOYING A WEIGHTED GRAPH KERNEL

be overcome by employing graph-based representations such as dependency trees.
The patterns of such an approach are given by dependency subtrees. An approach to
learn these patterns automatically was devised by Snow et al. [15]. For that, the path in
the dependency tree is extracted, which connects the corresponding nouns with each
other. To account for certain keywords indicating a hyponym relation like such (see
first Hearst pattern) they added the links to the word on either side of the two nouns
(if not yet contained) to the path too. Frequently occurring paths are then learned as
patterns for indicating a hyponymy relation.

Another often used approach is the use of structure kernels, usually tree and se-
quence kernels. Assume that a relation R1 = R(a1, a2) should be compared with a
relation R2 = R(a1′, a2′). Then the following kernels might be applied to determine
the estimated similarity of the surrounding tree structures:

• Argument Kernel. a1 is compared with a1′, and a2 with a2′ for the conformity
of their surface representations, lexical heads and entity types (e.g.,person or
organization) [3].

• N-Gram. Bigrams, trigrams, and so on that show up in the surface representa-
tion between a1 and a2 are compared with the corresponding n-grams between
a1′ and a2′ [3].

• Link Sequence. The conformity of the tokens (surface representation/lexical
head/type/word class) in the dependency path from argument a1 to a2 with that
from a1′ to a2′ is determined, that is, the ith token of the first path is compared
with the ith token of the second [3–5].

• Labels of the Dependency Paths. All labels in the dependency path from a1 to
a2 matching the labels of the path from a1′ to a2′ are determined, independently
of their order (bag of words) [3].

• Local Dependency. The conformity of the dependency relations directly con-
nected with the arguments a1 and a1′ (a2 and a2′, respectively) is determined.
This measure can also be computed if no connection can be established between
the two relation arguments for R1 or/and R2 [3].

• Subtree Comparison. The minimum subtrees, which contain both arguments are
compared [5,19].

Hyponym extraction approaches based on document clustering usually try to convert
the document hierarchy, as determined by a hierarchical clustering method, into a
taxonomy [17,20].

11.3 DRAWBACKS OF CURRENT APPROACHES

Pattern-based approaches are currently very popular for hyponymy extraction. But
there is the problem that either recall or precision is poor. Consider a pattern collection
containing among other things the pattern hyponym is a hypernym, which is very often
applicable, but the precision of the extracted hypotheses is rather low. If this pattern
is removed then the recall of the entire extraction process is seriously degraded.

www.it-ebooks.info

http://www.it-ebooks.info/

SEMANTIC NETWORKS FOLLOWING THE MULTINET FORMALISM 307

However, the precision probably increases. A second drawback is that the possibility
of a pattern application is always a binary decision. A pattern is either applicable or
not and therefore the pattern provides no quality estimate based on the semantic or
syntactic sentence structure. Kernel-based approaches do not suffer these problems.
However, for kernel approaches it is difficult to figure out, which sentence elements
should be set as anchor points for the kernel. To compare all nouns with all other nouns
would result in a very long runtime. In this work, the advantages of both approaches are
combined. We extract hyponym hypotheses with quite general patterns and afterwards
validate them with a graph kernel. In this way, the hypotheses extraction is very fast,
and also the anchor points for the graph kernel are already determined and finally, we
also get structure-based quality estimates.

Another drawback of current approaches is that they are usually based on
words instead of concepts or word readings. Furthermore, a syntactic or surface
representation is less suitable for semantic relation extraction. In MultiNet for
instance, anthroponyms (person names) are already identified and represented as
feature value structures. Moreover, the semantic network representation of several
different syntactic representations often coincide if identical meaning is expressed.
Thus, semantic patterns are more generally usable than patterns based on surface or
syntactic representations.

11.4 SEMANTIC NETWORKS FOLLOWING THE
MULTINET FORMALISM

The relation extraction described here is based on semantic networks that follow
the MultiNet formalism, which was devised by Hermann Helbig [21]. The semantic
networks are automatically created by applying a deep syntactico-semantic parser to
a text corpus. A semantic network is a graph where the nodes represent concepts and
the arcs represent relations between the concepts (or functions involving concepts).
Lexicalized concepts correspond to word readings. A lexicalized concept name is
given by the lemma and two numbers specifying the homograph and the sememe. For
details on the numbering scheme see Ref. [21].

An example of such a semantic network is given in Figure 11.1. The central sen-
tence node, which represents the meaning of the entire sentence, is labeled c1. The
actor or agens (MultiNet relation: agt) of the situation expressed by the sentence is
a certain man, which is an instance (MultiNet relation sub) of the generic concept
man.1.1. The *itms function combines several concepts in a conjunction, in this case
the concepts representing the two constituents: cello and other instruments.

Sample relations of MultiNet are given below:

• agt. Conceptual role: agent
• attr. Specification of an attribute
• *itms. Function enumerating a set
• obj. Neutral object
• pred. Predicative concept characterizing a plurality

www.it-ebooks.info

http://www.it-ebooks.info/

308 HYPONYM EXTRACTION EMPLOYING A WEIGHTED GRAPH KERNEL

instrument.1.1

P
R

E
D

PROP

cello.1.1

S
U

B

past.0

*ITMS

TEM
PSU

BS

OBJ

A
G

T
S

U
B

buy.1.1

other.1.1

man.1.1

C2

C3

C4

C5 C1

FIGURE 11.1 Example semantic network for the sentence Der Mann kaufte ein Cello und
andere Instrumente / “The man bought a cello and other instruments.” For better readability,
English concept names are used in the figure.

• prop. Relation between object and property
• sub. Relation of conceptual subordination (hyponymy and instance-of)
• sub0. Relation of generalized subordination (hyponymy and instance-of), super-

relation of sub, subr, and subs
• subs. Relation of conceptual subordination for situations (hyponymy, instance-

of, and troponymy)
• subr. Relation of conceptual subordination for relations
• temp. Relation specifying the temporal embedding of a situation
• val. Relation between a specific attribute and its value

11.5 SUPPORT VECTOR MACHINES AND KERNELS

A support vector machine [16] is a supervised machine learning method that dis-
tributes instances into two classes (extensions with more than two classes are also
available). Using a set of training examples, a hyperplane is calculated that sepa-
rates data of the two different classes from each other and maximizes the margin

www.it-ebooks.info

http://www.it-ebooks.info/

ARCHITECTURE 309

of the hyperplane. This margin is defined by the instances that are located closest
to the hyperplane. Usually, a complete separation is not possible. Therefore, vectors
on the wrong side of the hyperplane are allowed but penalized. The support vector
optimization problem is given by [22]

argmin
w,b,ξi

{0.5||w||22 + C

m∑
i=1

ξi} (11.1)

with the constraints
yi(〈w, xi〉 + b) ≥ 1 − ξi, 1 ≤ i ≤ m

ξi ≥ 0, with 1 ≤ i ≤ m
(11.2)

where w ∈ Rn, vector, orthographic to the hyperplane; b ∈ R, parameter; xi ∈ Rn,
feature vectors; yi ∈ {−1, +1}, class labels; 〈., .〉, the scalar product; ξi, slack vari-
ables; C ∈ R+, a positive constant.

This optimization problem stated in Formulas 11.1 and 11.2 is given in the so-called
primal representation. It can be converted into the equivalent dual representation

argmax
α

m∑
i=1

⎛
⎝αi − 1

2

m∑
j=1

αiαjyiyj〈xi, xj〉
⎞
⎠ (11.3)

with the constraints
0 ≤ αi ≤ C

m∑
i=1

αiyi = 0
(11.4)

where α, the vector to be determined by the optimization; w = ∑m
i=1 αiyixi; C ∈ R+,

a positive constant.
In recent implementations of support vector machines, the scalar product 〈xi, xj〉

can be replaced by an arbitrary user-provided kernel function K. The only conditions
on such a function are that the matrix of kernel values is positive-semidefinite and
symmetric. The dual representation allows it to apply a support vector machine on
problems where the vector representations xi are unknown or represented in an infinite
space. Only the kernel function K has to be defined. Thus, the dual representation
makes it possible to compare graphs and trees that have no natural vector representa-
tion. In the next sections, we demonstrate how support vector machines and a graph
kernel can be employed for hyponymy harvesting.

11.6 ARCHITECTURE

In this section, we shortly give an overview of the total hyponymy extraction process.

1. In the first step the corpus containing the hyponyms (here the German
Wikipedia) is parsed by the deep linguistic parser WOCADI2 [23]. For that

2WOCADI is the abbreviation of word-class disambiguating parser.

www.it-ebooks.info

http://www.it-ebooks.info/

310 HYPONYM EXTRACTION EMPLOYING A WEIGHTED GRAPH KERNEL

HKB

Tokens SN

Shallow pattern
application

HaGenLex Text

Deep pattern
application

Validation
(score)

KB

WOCADI
analysis

Selection

Validation
(filter)

Deep patterns

Shallow patterns

FIGURE 11.2 Activity diagram for the hyponym acquisition process.

WOCADI makes use of the semantic lexicon HaGenLex3 [24] and a given
knowledge base KB. The output of the WOCADI analysis for a single sentence
is a token list, a dependency tree, and a semantic network.

2. Shallow extraction rules (similar to Hearst patterns) are applied on the token list.

3. Deep extraction rules are applied on the semantic network representation.

4. A validation module is applied that filters out incorrect hypotheses by looking
on the semantic properties of these hypotheses [25].

5. Not all of the hypotheses that pass this filter are actually correct. Therefore,
a support vector machine is additionally applied to validate the accepted
hypotheses. Validation scores are calculated for all hypotheses and stored with
them together in the hypotheses knowledge base HKB.

6. The best hypotheses of HKB, according to the scores, are stored in the
knowledge base KB after manual inspection.

The entire validation process is illustrated in Figure 11.2.

3HaGenLex is the abbreviation of Hagen German Lexicon.

www.it-ebooks.info

http://www.it-ebooks.info/

GRAPH KERNEL 311

TABLE 11.1 A Selection of Deep Patterns

Definition Example

sub0(a1, a2) ← sub0(c, a1)∧
pred(e, a2) ∧ F*itms(d, c)∧ The secretary (a1) and other
F*itms(d, e) ∧ H*itms(c, e)∧ politicians (a2) criticized the law.
prop(e, ander .1 .1 (other .1 .1))

sub0(a1, a2) ← pred(c, a2)∧
Do you have a cello (a1) or

sub(e, a1) ∧ F*altn1(d, c)∧
another string instrument (a2)?

F*altn1(d, e) ∧ prop(c, ander .1 .1 (other .1 .1))

sub0(a1, a2) ← scar(c, d)∧
sub0(d, a1) ∧ obj(c, e)∧ A skyscraper (a1) denotes
sub0(e, a2)∧ a very high building (a2).
subs(c, bezeichnen.1 .1 (denote.1 .1))

sub0(a1, a2) ← arg1(d, e)∧
This car (a1) is the

arg2(d, f) ∧ subr(d, equ.0)∧
best vehicle (a2) they offer.

sub0(e, a1) ∧ sub0(f, a2)

sub0(a1, a2) ← sub(f, a2)∧
temp(e, present .0) ∧ subr(e, sub.0)∧ The Morton number (a1) is a
sub(d, a1) ∧ arg2(e, f)∧ dimensionless indicator (a2).
arg1(e, d)

Fr(a1, a2): a1 is the first argument of function r and precedes a2 in the argument list. Hr(a1, a2):
a1 and a2 are arguments of function r and a1 directly precedes a2 in the argument list.

A deep extraction rule consists of a conclusion sub0(a1, a2) (sub0:
hyponymy/instance-of/troponymy relation) and a premise that is a semantic network
where two of the nodes are labeled with the variables a1 and a2. The pattern net-
work is tried to be matched to the sentence network. The variables can be bound
to arbitrary concepts. The instantiated conclusion, where a1 and a2 are replaced by
the concepts they were bound to, is the extracted hypothesis. Several example rules
are given in Table 11.1. The extraction rules are in part manually specified and in
part learn automatically from a collection of annotated semantic networks employing
the Minimum Description Length Principle [26], basically following the approach of
Cook and Holder [12].

11.7 GRAPH KERNEL

A graph kernel is a kernel function that compares different graphs. We use such a
graph kernel to compare two hyponymy hypotheses with each other. In particular,
we compare by means of a graph kernel the SNs with each other from which the
hypotheses were extracted from. There exist a lot of different types of graph kernels.

www.it-ebooks.info

http://www.it-ebooks.info/

312 HYPONYM EXTRACTION EMPLOYING A WEIGHTED GRAPH KERNEL

The graph kernel of Borgwardt and Kriegel [27] compares the shortest paths in both
graphs. These paths are determined for each graph separately. Two comparison func-
tions were tested to compare the graph lengths: the product of the lengths and the
function that takes the value of one if both lengths are identical and zero otherwise.
The graph kernel value is then given by the sum of all such comparison function
values iterating over all possible pairs of nodes in the two graphs. Kashima et al.
[28] generate randomly common walks on the two graphs and count the number of
walks that both graphs have in common. Another approach of Kashima, which he
devised together with Hido, is to compare special kind of hash values computed for
each graph [29].

Our work is based on the graph kernel as proposed by Gärtner et al. Like the
approach of Kashima et al., the idea of this graph kernel is that graphs are similar
if they share a lot of walks. Let us review some graph definitions before further
explanations. A directed nonuniquely labeled graph is given by a set of nodes and
arcs: G = (V, E). Each node and arc is assigned a label: label : G ∪ E → A∗ where
A is a given alphabet. This function is not injective, which means that different nodes
or arcs can be mapped to the same label. A path in this graph is defined as a subgraph
with a set of nodes V = {v0, . . . , vk} and arcs E = {e0, . . . , ek} with ei = (vi, vi+1)
and where all vis must be distinct [30]. In contrast to a path, the same arc can be
visited twice in a walk, which means that E is no longer a set but a sequence. Gärtner
et al. use common walks instead of common paths because his proposed common
walk kernel can easily be computed by matrix multiplications. For our hyponymy
extraction scenario, we allow to follow an arc against the direction of the arc too if
the associated arc in the other graph is also followed against its direction.

An example of a common walk in two SNs is given in Figure 11.3. Before cal-
culating the common walks, the hyponym and hypernym candidates are replaced by
fixed variables (here a1 and a2), which allows it to identify common walks involv-
ing hypernym and hyponym candidate nodes between SNs for sentences even if the

1

2

3

4

1

2

3

4

fokus

c935

c889

c945
c885

AR
G

1

c337

AGT
c331

a2=instrument.1.1

*ITMS
other.1.1

a1=cello.1.1 he.1.1

c883

WCFA−TAG

TEM
PSU

BS

other.1.1

a2=politician.1.1

rprs.0

P
R

E
D

PROP

*ITMS

MCONT
WCFA−TAG

criticize.1.1

past.0

focus

law.1.1

O
B

J
S

U
B

S
U

B

SUBR S
U

B
S

A
G

T
S

U
B

S
U

B

PROP

P
R

E
D

a1=secretary.1.1

c342

c341

c268

c333
TEMP

past.0buy.1.1

OBJ

FIGURE 11.3 A common walk/path of length 4 in the disordered graphs.

www.it-ebooks.info

http://www.it-ebooks.info/

GRAPH KERNEL 313

hypernyms and hyponym candidates of the two sentences are different. In this way,
the generality is increased.

The calculation of the kernel value is based on the product graph (PG) represen-
tation of the two graphs G1 and G2. These graphs are also called factor graphs of
the product graph. The node set PV of the product graph consists of pairs of nodes
of the two factor graphs. The first component of such a pair is a node of the first
factor graph, the second component a node of the second graph, and both nodes must
be assigned the same label. For our semantic network scenario, the label of a node
is assigned the concept name if the concept is lexicalized (e.g., school.1.1) or anon
(e.g.,if the concept is named c935) otherwise. Therefore, two nonlexicalized nodes
always show up together as a node pair in the product graph.

G1 = (V1, E1)

G2 = (V2, E2)

PG = G1 × G2

PV ⊆ V1 × V2

u ∈ PV :⇔ u = (s1, s2), s1 ∈ G1, s2 ∈ G2∧
label(s1) = label(s2)

In contrast to Gärtner et al., we also identify nodes with each other if the labels are
not identical, but the associated concepts are synonymous.

An arc e = (u1, u2) belongs to the product graph, if there exist an arc between the
first node components of u1 and u2 in the first factor graph and an arc between the
second node components in the second factor graph.

(u1, u2) ∈ PE :⇔ u1 = (s1, s2), u2 = (t1, t2)∧
(s1, t1) ∈ E1, (s2, t2) ∈ E2∧

label(u1) = label(u2)

The adjacency matrix A of the product graph is given by

APG = (axy) with axy = 1 :⇔ (ux, uy) ∈ PE ∨ (uy, ux) ∈ PE

where n is the number of nodes in the product graph. An entry (x, y) in the adjacency
matrix of the product graph is one iff there exists one common walk from node ux to
uy or from node uy to ux of length one. Thus, basically an undirected graph model is
used in the product graph with the exception that the orientations of the two identified
arcs in the two compared graphs have to be identical. More generally, there are k

common walks of length i from node x to node y iff ai
xy = k where (ai

xy) = Ai
PG is

the adjacency matrix taken to the ith power.

www.it-ebooks.info

http://www.it-ebooks.info/

314 HYPONYM EXTRACTION EMPLOYING A WEIGHTED GRAPH KERNEL

The total graph kernel value is then given by4

K(G1, G2) = ιT
∞∑
i=0

λiAi
PGι

where λ ∈ R and λ < 1. λ is a discounting factor and causes long common walks to be
weighted less than short ones. This sounds quite irritating at first since a long common
walk is a stronger indication of similarity than a short one. But a long common walk
always implies a lot of shorter common walks. In this way, a long common is overall
weighted more than a short one. ι is a vector consisting of only ones. ιT Mι (ιT denotes
the transposed vector) causes the entries of the surrounded matrix to be summated.
A0

PG is defined to be the identity matrix I. There is an analytical solution of this infinite
sum if this sum converges. This becomes obvious after several transformations(∞∑

i=0

λiAi
PG

)
−

(∞∑
i=1

λiAi
PG

)
= I

(∞∑
i=0

λiAi
PG

)
− APGλ

(∞∑
i=0

λiAi
PG

)
= I

(11.5)

Let S be (
∑∞

i=0 λiAi
PG). Then Equation 11.5 can be rewritten as

(S − APGλS) = I

S(I − APGλ) = I

S = (I − APGλ)−1

(11.6)

Since matrix inversion is cubic in runtime, the kernel can be computed in O(n3),
where n is the number of nodes in the product graph.

11.8 GRAPH KERNEL EXTENSIONS

The kernel as described so far disregards the position of hyponym and hypernym
candidates in the product graph. However, nodes directly connected to hyponym and
hypernym candidates or nodes that are located nearby a direct path from the hyponym
to the hypernym candidate are usually more important for validating a hyponymy
hypothesis. Nodes far away from both nodes could belong to an embedded subclause
or a second main clause that is not semantically related to the hyponym and hypernym
candidates. Therefore, instead of considering all common walks, two special graph
kernels are used, which are extensions of the original approach of Gärtner et al.
The first graph kernel counts weighted common walks that pass both hyponym and

4Note that in our evaluation, the index i was started at one instead of zero in order to exploit the entire
value range for the normalized kernel value from zero to one.

www.it-ebooks.info

http://www.it-ebooks.info/

GRAPH KERNEL EXTENSIONS 315

hypernym candidates. The second graph kernel counts the weighted common walks
that pass at least one of the hyponym and hypernym candidates. Both kernels cannot
be directly calculated by this approach but obtained by subtracting different numbers
of common walks from each other. The weighted number of common walks that pass
at least one of the hyponym or hypernym candidate can be obtained by subtracting
the number of common walks that pass neither hyponym and hypernym candidate
from the number of all common walks.

Ka1∨a2 = K − K¬a1∧¬a2 (11.7)

The weighted number of common walks that do not pass neither a1 nor a2 is fairly
easy to determine. It can be done by just cancelling out (which means setting to zero)
all entries of the adjacency matrix in the row and column belonging to either a1 or
a2 and calculating the ordinary common walk kernel afterwards.

Similarly, the weighted number of common walks that pass both hypernym and
hyponym candidates can be obtained by subtracting the number of common walks
that do not pass the hypernym candidate node and the number of common walks
that do not pass the hyponym candidate node from the number of all common walks.
Since the number of common walks that pass neither the hyponym nor the hypernym
candidate node are subtracted twice, they have to be added one time to the difference.

Ka1∧a2 = K − K¬a1 − K¬a2 + K¬a1∧¬a2 (11.8)

One possibility to calculate the common walk kernel is to apply Formula 11.6. An
alternative, which we discuss in more detail in the remainder of this paper, is to use
an approximation

∞∑
i=0

ιT (λiAi
PG)ι ≈

k∑
i=0

ιT (λiAi
PG)ι (11.9)

for a sufficient high k. The advantage of this approach is that matrix multiplications are
often hardware accelerated due to their importance for 3D-computer games. Although
the runtime is cubic, the performance can be much faster that one would expect. A
quite simple optimization is to reuse the i − 1th entry of the sum for the calculation
of the ith entry

Ai+1
PG λi = APGλAi

PGλi (11.10)

A second optimization is to exploit the fact that the weighted number of all common
walks K as well as the weighted number of all common walks that pass neither a1
nor a2 is used in both kernels Ka1∨a2 and Ka1∧a2 so these two intermediate results
have to be calculated only once.

Note that the discount factor λ might be different for the kernels Ka1∨a2 and
Ka1∧a2. In this case, a direct use of those two intermediate results is not possible but

www.it-ebooks.info

http://www.it-ebooks.info/

316 HYPONYM EXTRACTION EMPLOYING A WEIGHTED GRAPH KERNEL

instead some reformulations are required. Consider the case that K for a given λ is
known and should be determined for λ′.

ιT
k∑

i=0

(
λ′iAi

PG

)
ι =

ιT
k∑

i=0

(
λi

(λ′

λ

)i

Ai
PG

)
ι =

k∑
i=0

(
ιT λi

(λ′

λ

)i

Ai
PGι

)
=

((λ′

λ

)0
, . . . ,

(λ′

λ

)k) · (
λ0A0

PG, . . . , λkAk
PG

) =

u · v

(11.11)

Thus, the kernel function for a different value of λs can be determined by a simple
scalar product. Finally, the two kernels are normalized with [22, p. 413]

Ka1∧a2,norm(G1, G2) = Ka1∧a2(G1, G2)/
√

Ka1∧a2(G1, G1)Ka1∧a2(G2, G2)

Ka1∨a2,norm(G1, G2) = Ka1∨a2(G1, G2)/
√

Ka1∨a2(G1, G1)Ka1∨a2(G2, G2)
(11.12)

The graph kernel is used to compare the SNs the hypotheses were extracted from. If
a hypothesis was extracted from several semantic networks then the maximum kernel
values of all combinations is used but considering at most two semantic networks per
hypothesis. Note that the maximum value function does not generally lead to positive-
semidefinite kernel matrices, which means that the solution found by the SVM may
only be a local optimum [31,32].

11.9 DISTANCE WEIGHTING

The kernels introduced so far have the advantage that the hypernym and hyponym
hypotheses are reflected by the calculation of the graph kernel. A further possible
improvement is to assign weights to the product graph nodes depending on the distance
of the associated nodes to the hyponym and hypernym candidates. Such a weighting is
suggested by the fact that edges located nearby the hypernym and hyponym candidates
are expected to be more important for estimating the correctness of the hypothesis.
It will be shown that a distance calculation is possible with minimum overhead just
by using the intermediate results of the kernel computations. Let us define the matrix
function B : Rm×n → R

m×n the function that sets an entry in a matrix to one, if the

www.it-ebooks.info

http://www.it-ebooks.info/

DISTANCE WEIGHTING 317

associated component of the argument matrix M = (mxy) is greater than zero and to
zero otherwise. Let (hxy) = B(M), then

hxy =
{

1, mxy > 0

0, otherwise
(11.13)

Let Aa1∨a2 be the adjacency matrix where all entries are set to zero, if either the column
or row of the entry is associated to a1 or a2. Then a matrix entry of B(Aa1∨a2APG)
is one, if there exists a common walk of length two between the two nodes and one
of them is a1 and a2. Let us define Ci as B(Aa1∨a2Ai−1

PG). An entry of Ci is one if
there exists a common walk of length i between two nodes and one of them is a1 or
a2. Then the distance of node u with matrix index v := index(u) from node a1 or a2
is i :⇔ ∃e : fe,v = 1 with (fx,y) = (Ci − ∑i−1

j=1 Cj). The matrix differences need
not to be calculated if the distances are determined iteratively starting at i = 0. Let
disti(u) : V → R be the distance of node u from a1 or a2 after the ith step. disti(u) is
a partial function, which means there are eventually nodes that are not yet assigned
a distance value. Distances that are once assigned are immutable, that is, they do not
change in succeeding steps, that is, disti(u) = a ⇒ disti+1(u) = a. disti(u) for i ≥ 1
is defined as

disti(u) = a ⇔ ∃e : ce,index(u) = 1∧
(disti−1(u) = a ∨ disti−1(u) = undef)∧
(cxy) = Ci

(11.14)

Furthermore, dist0(u) is defined as zero if u is a node containing the hypernym or
hyponym candidates. Ci can easily be obtained from Aj

PG , j = 0, . . . , i − 1, which
are intermediate results of the kernel computations. But the calculation can still be
further simplified. B(Aa1∨a2Ai−1

PG) can also be written as Aa1∨a2 ∧ B(Ai−1
PG) (M1 ∧

M2 is build analogously to the matrix product, where the multiplication of matrix
elements is replaced by the conjunction and the addition by the disjunction). The
equivalence is stated in the following theorem.

Theorem 11.1 If A and C are matrices with non-negative entries,
then B(AC) = B(A) ∧ B(C).

Proof: Let bxy be the matrix entries of B(AC), (axy) = A and (cxy) = C. A matrix
entry bxy of B(AC) is of the form B(

∑m
s=1(axscsy)). Assume

bxy = 1 ⇔
∃j : (axjcjy > 0) ⇔

∃j : (axj > 0 ∧ cjy > 0) ⇔
∃j : (B(axj) ∧ B(cjy) = 1) ⇔

m∨
s=1

(B(axs) ∧ B(csy)) = 1

(11.15)

www.it-ebooks.info

http://www.it-ebooks.info/

318 HYPONYM EXTRACTION EMPLOYING A WEIGHTED GRAPH KERNEL

Let us now assume

bxy = 0 ⇔
∀j : (axjcjy = 0) ⇔

∀j : (axj = 0 ∨ cjy = 0) ⇔
∀j : (B(axj) ∧ B(cjy) = 0) ⇔

m∨
s=1

(B(axs) ∧ B(csy)) = 0

q.e.d

(11.16)

�

Aa1∨a2 is a sparse matrix with nonzero entries only in the rows and columns of the
hyponym and hypernym candidate indices. The matrix Aa1∨a2 can be split up into two
components Arow, a1∨a2 where only the entries in rows index(a1) and index(a2) are
nonzero and into the matrix Acol, a1∨a2 where only the entries in columns index(a1)
and index(a2) are nonzero.

The matrix conjunction Aa1∨a2 ∧ B(Ai−1
PG) can then be written as

Aa1∨a2 ∧ B(Ai−1
PG) =

(Arow, a1∨a2 ∨ Acol, a1∨a2) ∧ B(Ai−1
PG) =

Arow, a1∨a2 ∧ B(Ai−1
PG) ∨ Acol, a1∨a2 ∧ B(Ai−1

PG)

(11.17)

Similarly, Arow, a1∨a2 can be further splitted up into

Arow(hypo), a1∨a2 and

Arow(hyper), a1∨a2
(11.18)

This conjunction contains the nonzero entries for the hyponym and hypernym row
(analogously for the columns). The conjunction
Ahypo/hyper(row), a1∨a2 ∧ B(Ai−1

PG) is given in Figure 11.4, the conjunction
Ahypo/hyper(col), a1∨a2 ∧ B(Ai−1

PG) in Figure 11.5. The first factor matrix as well as the
result of the matrix conjunction are sparse matrices where only the nonzero entries are

d

qp

11 ∧ ... B(Ai−1) ∨ B(Ai−1)p q=

B(Ai−1)PG

B(Ai−1)1

B(Ai−1)n

FIGURE 11.4 Matrix conjunction of Ahyper/hypo(row)a1∨a2 and B(Ai−1
PG)where

Ahyper/hypo(row)a1∨a2 is a sparse matrix with nonzero entries only in one row (called: d)
and in the two columns p and q.

www.it-ebooks.info

http://www.it-ebooks.info/

DISTANCE WEIGHTING 319

g

h

p

1

1

∧ ... =

B(Ai−1)PG

B(Ai−1)p

B(Ai−1)p

B(Ai−1)n

B(Ai−1)1

FIGURE 11.5 Matrix conjunction of Ahyper/hypo(col)a1∨a2 and B(Ai−1
PG) where Ahyper/hypo(col)a1∨a2

is a sparse matrix with nonzero entries only in one column (called: p) and in the two rows g

and h.

given in the figures. Ar denotes the rth row vector of matrix A. Usually the hyponym
and hypernym nodes are only directly connected to one or two other nodes. Therefore,
only a constant number of rows has to be checked for nonzero entries in each step.
Thus, with the given intermediate results of Aj

PG (j = 1, . . . , i − 1) with different
exponents j, the distance computation can be done in time O(n).

After the distances are calculated, an n × n (n: number of nodes in the product
graph) weight matrix W is constructed in the following way:

W := (wxy) and

wxy := gw(a) with

g∗
w(a) :=

⎧⎪⎨
⎪⎩

1.0 a ≤ c

cos(b(a − c)) 0 < b(a − c) ≤ π/2

0.0 b(a − c) > π/2

gw(a) := max{0.1, g∗
w(a)} and

a := min{distk(x), distk(y)}

(11.19)

The cosine function is used to realize a smooth transition from 1.0 to 0.1. b, c are
fixed positive constants, which can be determined by a parameter optimization (for
instance by a grid search). They are currently manually set to b = π/5, c = 2. The
application of the weight matrix is done by a component-wise (*) multiplication. Let
M1 and M2 be two m × n matrices. Then the component-wise product P = M1 ∗ M2
with P = (pxy), M1 = (m1,xy), M2 = (m2,xy) is defined as pxy = m1,xy · m2,xy for
1 ≤ x ≤ m, 1 ≤ y ≤ n.

An alternative method to derive the weighted matrix, directly determines weights
for the edges instead for the nodes. The matrix of distance values for every edge
is given by D = (dxy) with dxy = i − 1 :⇔ fxy = 1 and (fxy) = B(Ci − ∑i−1

j=1 Cj).
The weight matrix W=(wxy) is then given by wxy = gw(dxy). This method also ben-
efits from the proposed matrix decomposition, which speeds up the matrix multipli-
cation enormously. We opted for the first possibility of explicitly deriving distance
values for all graph nodes, which allows a more compact representation.

The component-wise multiplication can be done in O(n2) and is therefore much
faster than the ordinary matrix multiplication, which is cubic in runtime. The

www.it-ebooks.info

http://www.it-ebooks.info/

320 HYPONYM EXTRACTION EMPLOYING A WEIGHTED GRAPH KERNEL

component-wise multiplication follows the distributive and the commutative laws,
which can easily be seen. Thus,

ιT W ∗
(

k∑
i=0

(λiAi
PG)

)
ι = ιT

(
k∑

i=0

(λiW ∗ Ai
PG)

)
ι. (11.20)

Therefore, the Formula 11.11 changes to

ιT W ∗
k∑

i=0

(λ′iAi
PG)ι =

ιT
k∑

i=0

(
λi

(
λ′

λ

)i

W ∗ Ai
PG

)
ι =

k∑
i=0

((
λ′

λ

)i

ιT λiW ∗ Ai
PGι

)
=

((
λ′

λ

)0

, . . . ,

(
λ′

λ

)k
)

· (λ0W ∗ A0
PG, . . . , λkW ∗ Ak

PG) =

u · v(W)

(11.21)

This shows that the transformation method given in Formula 11.11 where the sum is
converted from one value of λ to another is still possible.

11.10 FEATURES FOR HYPONYMY EXTRACTION

Beside the graph kernel approach we also estimated the hypernymy hypothesis cor-
rectness by a set of features. The following feature are used:

• Pattern Application. A set of binary features. A pattern feature is set to one, if
the hypothesis was extracted by this pattern, to zero otherwise.

• Correctness. In many cases the correctness can be estimated by looking on the
hyponymy and hypernymy candidate alone. An automatic approach was devised
that calculates a correctness estimation based on this assumption [25].

• Lexicon. The lexicon features determines a score based on the fact that if both
hypernym and hyponym candidates (or the concepts associated to their base
words) were contained in the lexicon or only one of them. This procedure is
based on the fact that a lexicon-based hyponymy hypotheses validation is only
fully possible, if both concepts are contained in the deep lexicon.

• Context. The context features investigates if both hyponym and hypernym can-
didates are connected in the semantic network to similar properties.

• Deep/Shallow. This binary feature is set to one if a hypotheses is only extracted
by either deep or shallow extraction rules (0) or by both together (1).

www.it-ebooks.info

http://www.it-ebooks.info/

EVALUATION 321

11.11 EVALUATION

We applied the patterns on the German Wikipedia corpus from November 2006, which
contains about 500,000 articles. In total, we extracted 391,153 different hyponymy
relations employing 22 deep and 19 shallow patterns. The deep patterns were matched
to the SN representation, the shallow patterns to the tokens. Concept pairs that were
also recognized by the compound analysis were excluded from the results, since
such pairs can be recognized on the fly and need not be stored in the knowledge
base. Thus, these concept pairs are disregarded for the evaluation. Otherwise, recall
and precision would increase considerably. 149,900 of the extracted relations were
only determined by the deep but not by the shallow patterns. If relations extracted
by one rather unreliable pattern are disregarded, this number is reduced to 100,342.
The other way around, 217,548 of the relations were determined by the shallow
but not by the deep patterns. 23,705 of the relations were recognized by both deep
and shallow patterns. Naturally, only a small fraction of the relations were checked
for correctness. In total, 6932 relations originating from the application of shallow
patterns were annotated, 4727 were specified as correct. In contrast, 5626 relations
originating from the application of deep patterns were annotated and 2705 were
specified as correct.

We evaluated our hyponymy extraction approach called SemQuire (SemQuire for
acquiring knowledge semantic-based) on a set of selected 1500 hypotheses, which
were annotated by test persons. The annotation was either {+1} for hyponymy re-
lation actually present and {−1} for hyponymy relation not present. We conducted
on this set a 10-fold cross-validation. Positive and negative examples were chosen
equally, which avoids that the evaluation values fluctuate depending on the used pat-
terns. Two methods were evaluated, the feature-based validation and the validation
where a graph kernel is used in addition. The confusion matrix is given in Table 11.2,
the evaluation measures in Table 11.3. The evaluated measures are accuracy (relative
frequency with which a decision for hypothesis correctness or noncorrectness is cor-
rect), precision (relative frequency with which a predicted hyponym is indeed one),
and recall (relative frequency with which correct hyponym hypotheses were predicted
as correct). Note that the given recall is the recall of the validation and not of the hy-
pothesis extraction component. The use of the graph kernel leads to an increase in

TABLE 11.2 Confusion Matrix for the Validation of Hypernyms

Cimiano GK− GK+ �

PNH PH PNH PH PNH PH

NH 585 165 637 113 611 139 750
H 473 277 187 563 149 601 750
� 1058 442 824 676 760 740

Cimiano: context-based method from Cimiano et al., GK−=without graph kernel
(only feature kernel), GK+=with graph and feature kernel. NH: no hyponym, H:
hyponym, PNH: predicted nonhyponym, PH: predicted hyponym.

www.it-ebooks.info

http://www.it-ebooks.info/

322 HYPONYM EXTRACTION EMPLOYING A WEIGHTED GRAPH KERNEL

TABLE 11.3 Accuracy, F -Measure, Precision, and Recall for the
Validation of Hyponyms for the GermaNet Classifier, the Context-
Based Method of Cimiano et al. and SemQuire

Measure GermaNet Cimiano GK− GK+

Accuracy 0.52 0.57 0.80 0.81
F -measure 0.07 0.46 0.79 0.81
Precision 1.00 0.63 0.83 0.81
Recall 0.04 0.37 0.75 0.80

TABLE 11.4 Confusion Matrix for the Validation of Hypernyms for
the Unweighted and the Weighted Graph Kernel

Weighted− Weighted+ �

PNH PH PNH PH

NH 348 152 349 151 500
H 191 309 190 310 500
� 539 461 539 461

TABLE 11.5 Accuracy, F -Measure, Precision, and Recall
for the Validation of Hyponyms for the Unweighted and the
Weighted Graph Kernel

Measure Weighted− Weighted+
Accuracy 0.657 0.659
F -measure 0.643 0.645
Precision 0.670 0.672
Recall 0.618 0.620

accuracy, F -measure and recall where the increase of the recall is significant with
a level of 5%. Furthermore, we compared our system SemQuire with a GermaNet
classifier5 that opts for hypernymy if the hypernymy relation can be looked up in the
GermaNet knowledge base and/or can be inferred by the use of synonymy and/or
the transitive closure of the hypernymy relation. Furthermore, we reimplemented the
context-based hypernymy validation method as proposed by Cimiano et al. [33]. Both
methods were clearly outperformed by SemQuire (significance level: 1%).

Furthermore, a preliminary evaluation of the weighting method was done on 1000
instances (see confusion matrix in Table 11.4 and evaluation measures in Table 11.5).
At first one might think that the evaluation can be done in such a way that the non-
weighted graph kernel is replaced by the weighted graph kernel and the original
F -measure is compared with that one obtained with the weighted graph kernel. But

5GermaNet synsets were mapped to HaGenLex concepts.

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 323

since the weights are always less than one, the total weight of the graph kernel in
comparison with the feature-based kernel would be reduced. Thus, in this experiment
the feature kernel was not used at all. Note that for some instances an SN was not
available, which degraded the F -measure of the graph kernel. The evaluation showed
that the F -measure of the weighted graph kernel is only slightly better than that one
of the unweighted graph kernel and the improvement is not significant. We plan to
test with other discount factors as well as other decay functions than cosine. Also, a
larger training corpus should be employed for reliable results.

11.12 CONCLUSION AND OUTLOOK

This paper described the automatic extraction of hyponyms from the Wikipedia corpus
based on several deep and shallow patterns. The shallow patterns are designed on the
basis of tokens and the deep patterns as semantic networks. Both types of patterns
were applied to the German Wikipedia. The extracted hypotheses were afterwards
validated with a support vector machine and a graph kernel. The use of a graph kernel
leads to an improvement in F -measure, accuracy, and recall where the increase in
recall is significant. A preliminary evaluation was done for the weighted graph kernel
where only a very slight (but not significant) improvement was reached. Furthermore,
we compared our method SemQuire to a GermaNet classifier and to the context feature
of Cimiano where both of them were clearly outperformed. We plan to optimize the
weights of the individual kernels (feature and graph kernel) by a grid search, which
is expected to further improve the results.

Currently the weighting is done only on the basis of the distance measured in
number of edges. Other factors such as the edge labels are not taken into account. So
future work could be to develop a more sophisticated weighting scheme.

ACKNOWLEDGMENTS

We thank all members of the department of the Goethe University that contributed to
this work, especially Prof. Alexander Mehler. Furthermore, I want to thank Vincent
Esche, Dr. Ingo Glöckner, and Armin Hoehnen for proof-reading this document. Also,
I am indebted to Prof. Hermann Helbig and Dr. Sven Hartrumpf for letting me use
the WOCADI parse of the Wikipedia.

REFERENCES

1. L. Getoor, B. Taskar, Introduction, in Introduction to Statistical Relational Learning,
(L. Getoor, B. Taskar, eds.), MIT Press, Cambridge, Massachusetts, pp. 1–8, 2007.

2. Z. Harchaoui, F. Bach, Image classification with segmentation graph kernels, in Proceed-
ings of the Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis,
Minnesota, 2007.

www.it-ebooks.info

http://www.it-ebooks.info/

324 HYPONYM EXTRACTION EMPLOYING A WEIGHTED GRAPH KERNEL

3. R. Grishman, S. Zhao, Extracting relations with integrated information using kernel meth-
ods, in Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics (ACL), Ann Arbor, Michigan, pp. 419–426, 2005.

4. R.C. Bunescu, R.J. Mooney, A shortest path dependency kernel for relation extraction,
in Proceedings of the Human Language Technology Conference on Empirical Meth-
ods in Natural Language Processing (HLT/EMNLP), Vancouver, Canada, pp. 724–731,
2005.

5. F. Reichartz, H. Korte, G. Paass, Dependency tree kernels for relation extraction from
natural language text, in Proceedings of the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Bled,
Slovenia, pp. 270–285, 2009.

6. S. Ghosh, P. Mitra, Combining content and structure similarity for xml document classifica-
tion using composite svm kernels, in 19th International Conference on Pattern Recognition
(ICPR), Tampa, Florida, pp. 1–4, 2008.

7. A. Moschitti, R. Basili, A tree kernel approach to question and answer classification in
question answering systems, in In Proceedings of the Conference on Language Resources
and Evaluation (LREC), Genova, Italy, 2006.

8. P. Mahé, J.-P. Vert, Graph kernels based on tree patterns for molecules. Mach. Learn. 75(1),
3–35 (2008).

9. J. Lafferty, A. McCallum, F. Pereira, Conditional random fields: probabilistic models for
segmenting and labeling sequence data, in Proceedings of the International Conference
on Machine Learning (ICML), Pittsburgh, Pennsylvania, pp. 282–289, 2001.

10. C. Sutton, A. McCallum, An introduction to conditional random fields for relational learn-
ing, in Statistical Relational Learning, (L. Getoor, B. Taskar, eds.), MIT Press, Cambridge,
Massachusetts, USA, pp. 93–127, 2007.

11. X. He, R.S. Zemel, M.Á. Carreira-Perpi nán, Multiscale conditional random fields for
image labeling, in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’04), Washington, D.C., Vol. 2, pp. 695–702, 2004.

12. D.J. Cook, L.B. Holder, Substructure discovery using minimum description length and
background knowledge. J. Artif. Intell. Res. 1, 231–255 (1994).

13. J. Rissanen, Stochastic Complexity in Statistical Inquiry, World Scientific Publishing Com-
pany, Hackensack, New Jersey, 1989.

14. R.N. Chittimoori, L.B. Holder, D.J. Cook, Applying the subdue substructure discov-
ery system to the chemical toxicity domain, in Proceedings of the 12th Interna-
tional Florida AI Research Society Conference (FLAIRS), Orlando, Florida, pp. 90–94,
1999.

15. R. Snow, D. Jurafsky, A.Y. Ng, Learning syntactic patterns for automatic hypernym dis-
covery, in Advances in Neural Information Processing Systems 17, MIT Press, Cambridge,
Massachusetts, pp. 1297–1304, 2005.

16. V. Vapnik, Statistical Learning Theory, John Wiley & Sons, New York, New York, 1998.

17. T.T. Quan, S.C. Hui, A.C.M. Fong, T.H. Cao, Automatic generation of ontology for schol-
arly semantic web, in The Semantic Web: ISWC 2004, Springer, Heidelberg, Germany,
Vol. 4061 LNCS, pp. 726–740, 2004.

18. M. Hearst, Automatic acquisition of hyponyms from large text corpora, in Proceedings
of the 14th International Conference on Computational Linguistics (COLING), Nantes,
France, pp. 539–545, 1992.

www.it-ebooks.info

http://www.it-ebooks.info/

REFERENCES 325

19. A. Culotta, J. Sorensen, Dependency tree kernels for relation extraction, in Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics (ACL),
Barcelona, Spain, pp. 423–429, 2004.

20. V. Kashyap, C. Ramakrishnan, C. Thomas, A.P. Sheth, Texaminer: an experimentation
framework for automated taxonomy bootstrapping. Int. J. Web Grid Serv. 1(2) (2005).

21. H. Helbig, Knowledge Representation and the Semantics of Natural Language, Springer,
Heidelberg, Germany, 2006.

22. B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regulariza-
tion, Optimization and Beyond, MIT Press, Cambridge, Massachusetts, 2002.

23. S. Hartrumpf, Hybrid Disambiguation in Natural Language Analysis. PhD thesis,
FernUniversität in Hagen, Fachbereich Informatik, Hagen, Germany, 2002.

24. S. Hartrumpf, H. Helbig, R. Osswald, The semantically based computer lexicon
HaGenLex: structure and technological environment. Traitement Automatique des Langues
44(2), 81–105 (2003).

25. T. vor der Brück, Hypernymy extraction using a semantic network representation. Int. J.
Comput. Linguist. Appl. 1(1), 105–119 (2010).

26. T. vor der Brück, Learning semantic network patterns for hypernymy extraction, in Pro-
ceedings of the 6th Workshop on Ontologies and Lexical Resources (OntoLex), Beijing,
China, pp. 38–47, 2010.

27. K.M. Borgwardt, H.-P. Kriegel, Shortest-path kernels on graphs, in International Confer-
ence on Data Mining, Houston, Texas, pp. 74–81, 2005.

28. H. Kashima, K. Tsuda, A. Inokuchi, Marginalized kernels between labeled graphs, in
Proceedings of the International Conference on Machine Learning (ICML), Washington,
D.C., pp. 321–328, 2003.

29. S. Hido, H. Kashima, A linear-time graph kernel, in 9th IEEE International Conference
on Data Mining, Miami, Floria, 2009.

30. R. Diestel, Graph Theory, Springer, Heidelberg, Germany, 2010.

31. B. Haasdonk, Feature space interpretation of SVM with indefinite kernels. IEEE Trans.
Pattern Anal. Mach. Intell. 27(4), 482–492 (2005).

32. F. Fleuret, S. Boughorbel, J.-P. Tarel, Non-mercer kernel for SVM object recognition, in
Proceedings of the British Machine Vision Conference (BMVS), London, UK, pp. 137–146,
2004.

33. P. Cimiano, A. Pivk, L. Schmidt-Thieme, S. Staab, Learning taxonomic relations from
heterogeneous sources of evidence, in Ontology Learning from Text: Methods, Evaluation
and Applications, (P. Buitelaar, P. Cimiano, B. Magnini, eds.), IOS Press, Amsterdam, The
Netherlands, pp. 59–73, 2005.

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

Algorithm, 2, 3, 5, 24, 29, 39, 40, 42, 51,
107, 110, 112, 114, 151, 152, 187,
188, 192, 214, 227, 237, 241, 258,
265, 266 , 268, 293, 296, 297, 298,
299

C3NET, 132
clique percolation, 3
clustering, 25, 37, 128
clustering and community, 4
community detection, 21, 32,37
dense cluster enumeration, 272
divisive and greedy, 114
enumeration, 268
Floyd–Warshall, 224
Girvan–Newman, 3, 4, 22, 25, 26, 27, 37,

38
Google’s PageRank, 34
Graph clustering, 20
Inference, 148
Kernighan–Lin, 3, 21, 22, 37, 263
Kuhn–Munkres assignment algorithm

(also called Hungarian algorithm),
231

machine learning, 217, 219
Nelder Meade simplex search, 177
network inference, 132, 137, 138
network reconstruction, 3, 4, 6, 10, 20, 36
optimization, 98
reverse search, 273, 274, 276, 290, 291,

294, 295

spectral bisection, 37
stochastic, 38
subgraph enumeration, 263, 301

Alzheimer’s disease, 245
differential expression, 253
histone deacetylase 1 (HDAC1), 254
information synergy, 247, 249
microarray dataset (GSE5281), 247
pathophysiology, 246
pathways, 246
synergy scores of gene pairs, 248, 250,

254

Bio- and chemoinformatics, 232
ligand-based virtual screening, 232
quantitative structure–property

relationships, 232
structure-activity relationship, 304

Complexity, 20, 25, 26, 29, 32, 37, 38, 69,
72, 213, 221, 234, 274, 275, 295, 296

arbitrary, 133
components of, 214
computational, 10, 15, 37, 241, 266
conventional, 274
levels of, 110
network, 69
of biological system, 1
of Boolean networks, 43
of counting problems, 241

Statistical and Machine Learning Approaches for Network Analysis, Edited by Matthias Dehmer and
Subhash C. Basak.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

327

www.it-ebooks.info

http://www.it-ebooks.info/

328 INDEX

Complexity (Continued)
of modulatory maps, 127
of the algorithm, 294
of the clique percolation method, 38
of the method, 290
overall, 132
pyramid, 105
space, 276
stochastic, 324
structural, 69

Computational systems biology, 1, 4, 38, 40,
41

Database(s), 2, 42, 107
database for annotation, visualization and

integrated discovery (DAVID), 41
Database of Interacting Proteins (DIP),

77, 106
Kyoto Encyclopedia of Genes and

Genomes (KEGG), 20, 77
Dimensionality, 155

curse of, 2
high, 219
reduction of, 42, 111, 127, 185

Entropy, 17, 30, 39, 69, 74, 129, 132, 134,
136, 137, 257, 304

network, 123
Shannon, 30, 69

Gene expression, 2, 3, 5, 6, 7, 8, 10, 12, 16,
36, 38, 42, 111, 112, 125, 131, 132,
135, 144, 147, 149, 151, 152, 245,
246, 247, 248, 251, 256, 257, 258,
264, 265, 296, 298, 299

Genetics, 1, 129
molecular, 257

Graph, 2, 4 , 8, 20, 32, 39, 40, 44, 46, 61, 69,
77, 78, 80, 81, 87, 95 , 99, 187, 188,
220, 224, 261, 287, 311, 312

acyclic, 12, 34
bipartite, 104, 107, 129, 191, 192, 194,

195, 196, 197, 199, 204, 205, 209,
211, 213, 214, 261, 264, 265

Chinese, 174
clustering, 2, 3, 20, 21, 263, 264
collaborative (cGraph) 3, 14
comparison, 153
complete, 164, 165

directed, 12, 142, 263
empty, 191
entropy, 69, 74, 129
Erdös–Rènyi, 144, 166
Global structure, 158
Graphlet spectrum, 229
invariant, 218, 229
isomorphism, 225
kernel, 218, 222, 223, 225, 232, 234, 236,

300, 304, 305, 307, 311, 312, 314,
316, 320, 322, 323

labeled, 262
Laplacian, 264
Metric, 154, 161
Mining, 262
molecular, 228, 230, 232, 262
non-bipartite, 193, 211
partitioning, 27
random, 28, 29, 31, 73, 106, 152, 156,

166, 169, 171, 191, 210
scale-free, 73
similarity, 218, 231
skew spectrum, 229
Skitter, 179, 182
sparse bipartite, 192
spectrum of, 155, 186, 220
symmetric, 193
undirected, 22, 143, 154
unweighted, 268, 271, 279
weighted, 14, 22, 47, 186, 224, 264, 266,

271, 281
Graphlet, 229, 230

Infomap, 3, 5, 22, 30, 31, 32, 34, 38
Internet, 163

Autonomous system (AS) topology, 163,
164, 165, 167, 168, 174, 175, 186

Internet service provider (ISP) 163
Internet topology collection, 168,
Internet topology evolution, 184

Markov chain, 11, 14, 15, 162
Matrix, 32, 155 , 264, 265, 304, 316

adjacency, 28, 33, 47, 66, 67, 71, 154,
313, 315, 317

clique-clique overlap, 32
confusion, 138, 321
covariance, 19, 20, 39, 42, 151
diagonal, 154

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 329

dissimilarity, 185
distance, 185, 285
empirical joint probability, 136
identity, 154, 314
interaction, 278
interaction weight, 267, 282
inversion, 314
kernel, 227
Laplacian, 154, 175
modularity, 28, 33, 37
of gene expression levels, 6
of pairwise vertex similarities, 231
partial correlation, 17
probability, 134
projection of, 155
random permutation, 15
sparse, 158, 223
symmetric, 29, 155
transition, 14
weight, 14, 319

Model, 3, 5, 8–12, 39, 40, 44
asymmetric, 214
Barabasi–Albert (BA), 78, 79, 166
bipartite cooperation (BC), 104
Bipartite network, 99
Decision tree, 246
Discretized, 136
Dorogovtsev–Mendes–Samukhin, 60, 101
duplication-divergence (DD), 102
empirical, 137
Erdos-Rényi, 143
Gaussian, 36
generalized linear preference (GLP), 166
graph, 211
hidden Markov, 304
Linear Preferential Attachment, 64
Maximum entropy, 304
Mouse, 254
Network, 65, 72, 80
positive feedback preference (PFP), 167
probabilistic, 246
random graph, 169
random walk, 222, 223
relational, 266
support vector machine, 246
topological, 163, 176, 177
Watts and Strogatz, 143
Waxman, 166, 177, 179, 183

Model network, 81, 82, 83, 84,87, 103

Natural language processing, 303
Network (s), 1, 14, 26, 27, 28, 29, 30, 32, 34,

36, 39, 79, 86, 109, 113, 158, 163,
191, 245

airport, 68
assortative, 62, 64, 65, 66, 164
Bayesian, 8, 10, 12, 36, 37, 42
Boolean, 8, 10, 11, 36, 37, 39, 43
biochemical control, 39
biological, 1, 3, 5, 6, 8, 10, 18, 19, 20, 36,

40, 41, 43, 77, 78, 79, 87, 105,128,
142, 237, 241, 249, 253, 262, 296,
298

ecological, 63, 109
biomolecular, 243
bipartite, 79, 95, 96, 97, 104, 105, 262
cellular, 297
centrality, 69–72
classical, 47
clustered, 55, 57
coauthor, 63
collaboration, 68
complex, 40, 47, 73, 74, 75, 105, 108,

128, 152,187, 188, 258
connected, 54, 164,165
Conservative Causal Core (C3NET), 132,

144, 147–150
correlated, 73
customer, 163
directed, 4, 8, 13, 32, 37, 38, 43, 47, 66, 74
directed and undirected, 3, 5
disassortative, 62, 64, 65, 66, 85
drug-target, 95, 107
ecological, 97, 99, 104, 105, 107
entropy, 123
equivalent, 13
Erdos-Rényi, 47, 78,132, 144, 145, 146,

148, 149, 150
evolution of, 73, 105
evolving, 78, 105,187
gene, 144, 257
gene co-expression, 257
gene regulatory, 39, 40, 63, 105,131, 133,

142,151, 152
global, 144, 146, 247, 251
gold standard, 22
graph entropy of, 69, 74
heterogeneous, 79
hierarchical modularity of, 84

www.it-ebooks.info

http://www.it-ebooks.info/

330 INDEX

Network (s) (Continued)
human metabolic, 259
import-export, 66
in cell biology, 73
inferred, 17
inference, 5, 14
input, 282
in silico, 6
instant messaging, 73
interaction, 241, 246, 257, 262, 264, 297
Interactome, 128
international import–export, 66
invariant of, 69
large scale, 40
lattice, 48, 54, 57
local, 132, 140–142, 146, 150
metabolic, 5, 50, 73, 87, 89, 92, 93, 94,

105,107, 108, 128, 249, 297
model, 59, 60
molecular, 151, 257, 296, 298
neural, 61
non-growth, 105
of E coli, 87
organizational, 99, 107
phylogenetic, 297
plant-animal mutualistic, 107
probabilistic, 42, 139, 140, 141
prokaryotic metabolic, 108
protein domain, 99, 107
protein homology, 297
protein interaction, 127, 128,232, 257
protein-interactome network (PIN), 109,

112–118
PIN from Escherichia coli, 111
PIN from Saccharomyces cerevisiae

111
protein-protein interaction, 128, 129, 246,

249,297
partitioning, 4, 38
protein-protein interaction (PPI), 63, 251
random, 47, 49, 54, 55, 56, 57, 58, 61, 72,

79, 105, 129, 144, 152, 167, 188,
253, 278

randomized, 68, 98
real world, 47, 50, 53,56, 58, 61, 72, 79,

92
reconstruction, 2, 3, 4, 8, 12, 14
reference, 138
regulatory, 63, 131, 133, 134, 140, 144

relevance, 17
representation of , 45
scale free, 5, 51, 55, 57, 58, 73, 74, 75,

105, 107, 249, 251,253
semantic, 303, 305, 307, 310, 311, 313,

316, 320, 323, 325
sentence, 311
signaling, 249
small dense, 79
small world, 53, 55, 152
social, 3, 74, 187, 237
sparse, 146
species-flavonoid, 96
species-metabolite, 79, 95, 99, 103
structural property of, 79
structure of, 143
synergy, 247, 249, 251, 253, 254, 255,

256, 258
technological, 63
telephone, 40
topology, 1, 2, 15, 16, 21, 26, 248, 298
topological, 113
transcriptional, 152
transcriptional regulatory, 257
trophic, 107
ultra small world, 55
undirected, 4, 5, 17, 18, 21, 24, 134, 142,

294
unipartite, 95
unweighted, 5, 22
weighted, 22, 67, 68, 74, 80, 287,

294, 295
Network biology, 258, 259
Network medicine, 257

Receiver operator characteristics (ROC),
138, 139

area under the curve (AUC), 138

Sequence, 299
Sequencing, 2, 41

deep, 7
high throughput, 42
second generation, 2

Self-similarity, 50, 73
Signal transduction, 3, 4
Similarity, 2, 110, 217, 218, 230, 231, 237,

239, 241, 303, 306, 314, 324
function, 304

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 331

graph, 234
local, 264
matrix, 285
of genomic sequences, 261

Subnetwork, 5, 20, 24, 61, 72, 115, 255, 301
highly connected, 55

highly interconnected, 58
interconnected, 68

Throughput, 1, 20, 246
high, 1, 7, 20, 40, 42, 131, 246, 298
low, 19

www.it-ebooks.info

http://www.it-ebooks.info/

